Автор работы: Пользователь скрыл имя, 27 Мая 2010 в 18:06, Не определен
1. Основные понятия и задачи статистики цен 5
2. Система показателей статистики цен 8
3. Индексный метод изучения динамики цен 14
Расчетная часть 20
Задание 1 21
Задание 2 27
Задание 3 33
Задание 4 35
– базисного периода времени (формула Ласпейреса)
– текущего периода времени (формула Пааше):
.
Индексы цен, рассчитанные по формуле Ласпейреса, особенно широко применяются при расчете ИПЦ, который показывает, во сколько раз изменились бы потребительские расходы в текущем периоде по сравнению с базисным, если бы при изменении цен уровень потребления оставался прежним. Такой расчет корректен при отсутствии значительных количественных и качественных изменений в структуре потребления (во времени и по территории, если индекс рассчитывается для нескольких регионов).
Изучение динамики розничных цен (например, для получения дефлятора, позволяющего рассчитать стоимостные показатели от четного периода в сопоставимых ценах) должно быть максимально приближено к совокупности товаров, произведенных в отчетном периоде.
Результат расчета по формуле Пааше показывает, во сколько раз сумма фактических затрат населения на покупку товаров больше (меньше) суммы денег, которую население должно было бы заплатить за эти же товары, если бы цены оставались на уровне базисного периода.
Статистическим анализом доказано, что в долговременном аспекте формула Пааше занижает реальное изменение цен вследствие общественной отрицательной корреляции (относительный вес товара падает, если цена его возрастает).
Доказано, что наилучший линейный индекс лежит между индексами, вычисленными по формулам Ласпейреса и Пааше. Зарубежные статистики пытались найти компромиссную формулу.
Формула Эдворта - Маршалла:
Эта формула улавливает сдвиги в структуре покупок, но привязана к условной структуре товарооборота, не характерной ни для одного реального периода, не имеет прямого экономического смысла. Ее расчет встречает препятствия в сборе материалов.
Наиболее удачным компромиссом многие экономисты считают «идеальный» индекс Фишера:
который оценивает не только набор товаров базисного периода по ценам текущего, но и набор товаров текущего периода по ценам базисного. Применяется в случае трудностей с выбором весов или значительного изменения структуры весов.
Цена - многофункциональное экономическое явление, ведущая рыночная категория, процессы их образования и изменения представляют собой предмет статистического исследования.
Статистика цен - самостоятельный блок, входящий как составная часть в статистику рынка и соответственно в социально-экономическую статистику. Поэтому в органах государственной статистики сформирована самостоятельная служба статистики цен.
Имеются следующие выборочные данные по 30-ти организациям, характеризующие деятельность за исследуемый период (выборка 20%-ная бесповторная):
Таблица 1
Статистическая
информация о результатах производственной
деятельности организации | |||||
№ органи-зации | Среднесписочная
численность работников, чел. |
Выпуск
продукции, млн руб. |
Фонд
заработной платы, млн руб. |
Затраты на
производство продукции, млн руб. |
Среднегодо-вая
стоимость ОПФ,
млн. руб. |
1 | 162 | 36,45 | 11,340 | 30,255 | 34,714 |
2 | 156 | 23,4 | 8,112 | 20,124 | 24,375 |
3 | 179 | 46,540 | 15,036 | 38,163 | 41,554 |
4 | 194 | 59,752 | 19,012 | 47,204 | 50,212 |
5 | 165 | 41,415 | 13,035 | 33,546 | 38,347 |
6
6 |
158 | 26,86
_ |
8,532 | 22,831 | 27,408 |
7 | 220 | 79,2
_ |
26,400 | 60,984 | 60,923 |
8 | 190 | 54,720 | 17,100 | 43,776 | 47,172 |
9 | 163 | 40,424 | 12,062 | 33,148 | 37,957 |
10 | 159 | 30,21 | 9,540 | 25,376 | 30,210 |
11 | 167 | 42,418 | 13,694 | 34,359 | 38,562 |
12 | 205 | 64,575 | 21,320 | 51,014 | 52,500 |
13 | 187 | 51,612 | 16,082 | 41,806 | 45,674 |
14 | 161 | 35,42 | 10,465 | 29,753 | 34,388 |
15 | 120 | 14,4 | 4,32 | 12,528 | 16,000 |
16 | 162 | 36,936 | 11,502 | 31,026 | 34,845 |
17 | 188 | 53,392 | 16,356 | 42,714 | 46,428 |
18 | 164 | 41,0 | 12,792 | 33,62 | 38,318 |
19 | 192 | 55,680 | 17,472 | 43,987 | 47,590 |
20 | 130 | 18,2 | 5,85 | 15,652 | 19,362 |
21 | 159 | 31,8
_ |
9,858 | 26,394 | 31,176 |
22 | 162 | 39,204 | 11,826 | 32,539 | 36,985 |
23 | 193 | 57,128 | 18,142 | 45,702 | 48,414 |
24 | 158 | 28,44 | 8,848 | 23,89 | 28,727 |
25 | 168 | 43,344 | 13,944 | 35,542 | 39,404 |
26 | 208 | 70,720 | 23,920 | 54,454 | 55,250 |
27 | 166 | 41,832 | 13,280 | 34,302 | 38,378 |
28 | 207 | 69,345 | 22,356 | 54,089 | 55,476 |
29 | 161 | 35,903 | 10,948 | 30,159 | 34,522 |
30 | 186 | 50,220 | 15,810 | 40,678 | 44,839 |
Цель статистического исследования - анализ совокупности организаций по признакам Затраты на производство и Сумма ожидаемой прибыли, включая:
По исходным данным (табл.1) необходимо выполнить следующее:
Сделать
выводы по результатам выполнения Задания
1.
Выполнение Задания 1
Целью выполнения данного Задания является изучение состава и структуры выборочной совокупности организаций путем построения и анализа статистического ряда распределения организаций по признаку Сумма ожидаемой прибыли.
1. Построение интервального ряда распределения банков по сумме ожидаемой прибыли вложений
При построении ряда с равными интервалами величина интервала h определяется по формуле
, (1)
где – наибольшее и наименьшее значения признака в исследуемой совокупности, k - число групп интервального ряда.
h = 18,216 ̶ 1,872 = 3,269 млн руб.
5
Таблица 1.1
Номер группы | Нижняя граница,
млн руб. |
Верхняя граница,
млн руб. |
1 | 1,872 | 5,1408 |
2 | 5,1408 | 8,4096 |
3 | 8,4096 | 11,6784 |
4 | 11,6784 | 14,9472 |
5 | 14,9472 | 18,216 |
Определяем число организаций, входящих в каждую группу, используя принцип полуоткрытого интервала [ ), согласно которому организации со значениями признаков, которые служат одновременно верхними и нижними границами смежных интервалов (1,872, 5,1408, 8,4096, 11,6784 и 14,9472 млн руб.), будем относить ко второму из смежных интервалов.
Для
определения числа организаций
в каждой группе строим разработочную
таблицу 1.2 (данные графы 4 потребуются
при выполнении Задания 2).
Таблица 1.2
Разработочная таблица для построения интервального ряда распределения и аналитической группировки
Группы организаций по сумме ожидаемой прибыли, млн руб. | Номер организации | Затраты на
производство продукции, млн руб. |
Объем ожидаемой прибыли, млн руб. |
1 | 2 | 3 | 4 |
1,872 – 5,1408 | 15 | 12,528 | 1,872 |
20 | 15,652 | 2,548 | |
2 | 20,124 | 3,276 | |
6 | 22,831 | 4,029 | |
24 | 23,89 | 4,55 | |
10 | 25,376 | 4,834 | |
Всего | 6 | 120,401 | 21,109 |
5,1408 – 8,4096 | 21 | 26,394 | 5,406 |
14 | 29,753 | 5,667 | |
29 | 30,159 | 5,744 | |
16 | 31,026 | 5,91 | |
1 | 30,255 | 6,195 | |
22 | 32,539 | 6,665 | |
9 | 33,148 | 7,276 | |
18 | 33,62 | 7,38 | |
27 | 34,302 | 7,53 | |
25 | 35,542 | 7,802 | |
5 | 33,546 | 7,869 | |
11 | 34,359 | 8,059 | |
3 | 38,163 | 8,377 | |
Всего | 13 | 422,806 | 89,88 |
8,4096 – 11,6784 | 30 | 40,678 | 9,542 |
13 | 41,806 | 9,806 | |
17 | 42,714 | 10,678 | |
8 | 43,776 | 10,944 | |
23 | 45,702 | 11,426 | |
Всего | 5 | 214,676 | 52,396 |
11,6784 – 14,9472 | 19 | 43,987 | 11,693 |
4 | 47,204 | 12,548 | |
12 | 51,014 | 13,561 | |
Всего | 3 | 142,205 | 37,802 |
14,9472 – 18,216 | 28 | 54,089 | 15,256 |
26 | 54,454 | 16,266 | |
7 | 60,984 | 18,216 | |
Всего | 3 | 169,527 | 49,738 |
ИТОГО | 30 | 1069,615 | 250,925 |
На основе групповых итоговых строк «Всего» табл. 1.2 формируем итоговую таблицу 1.3, представляющую интервальный ряд распределения организаций по среднесписочной численности менеджеров.
Таблица 1.3
Распределение организаций по сумме ожидаемой прибыли
Номер группы | Группы организаций
по сумме ожидаемой прибыли, млн руб.,
х |
Число организаций,
f |
1 | 1,872 – 5,1408 | 6 |
2 | 5,1408 – 8,4096 | 13 |
3 | 8,4096 – 11,6784 | 5 |
4 | 11,6784 – 14,9472 | 3 |
5 | 14,9472 – 18,216 | 3 |
Итого | 30 |
Приведем еще три характеристики полученного ряда распределения - частоты групп в относительном выражении, накопленные (кумулятивные) частоты Sj, получаемые путем последовательного суммирования частот всех предшествующих (j-1) интервалов, и накопленные частости, рассчитываемые по формуле .
Таблица 1.4
Структура организаций по сумме ожидаемой прибыли
№ группы | Группы организаций по сумме ожидаемой прибыли, млн руб | Число организаций, fj | Накопленная
частота, Sj |
Накопленная
частость, % | |
в абсолютном выражении | в % к итогу | ||||
1 | 2 | 3 | 4 | 5 | 6 |
1 | 1,872 – 5,1408 | 6 | 20 | 6 | 20,0 |
2 | 5,1408 – 8,4096 | 13 | 43,3 | 19 | 63,3 |
3 | 8,4096 – 11,6784 | 5 | 16,7 | 24 | 80,0 |
4 | 11,6784 – 14,9472 | 3 | 10,0 | 27 | 90,0 |
5 | 14,9472 – 18,216 | 3 | 10,0 | 30 | 100,0 |
Итого | 30 | 100,0 |
Информация о работе Индексный метод в статистическом изучении цен