Автор работы: Пользователь скрыл имя, 02 Октября 2009 в 22:45, Не определен
Дипломная работа
Во всех современных школьных учебниках алгебры и термин, и объем понятия квадратного уравнения одинаковы. Понятие вводится посредством явного определения, что обязывает организовать работу по усвоению его формальных признаков. Это тем более необходимо, что соответствующие признаки существенно используются при построении теории квадратных уравнений, в частности при выводе формулы корней и в теореме Виета.
Вывод формулы
корней квадратного уравнения может
быть осуществлен несколькими
Необходимым этапом при выводе формулы корней квадратного уравнения служит исследование, выявляющее три возможных случая: отсутствие корней, наличие одного или двух корней. При этом вводится дискриминант уравнения. В результате исследования формулируется вывод: «Если дискриминант квадратного уравнения ах2+bх+с = 0 отрицателен, то оно не имеет действительных корней; если дискриминант равен нулю, то имеется один корень, равный - b/2a; если дискриминант положителен, то уравнение имеет два корня ».
Учитывая
этот вывод, решение конкретных квадратных
уравнений проводится следующим
образом: сначала вычисляется
В ряде учебников, кроме основной формулы для корней квадратного уравнения ах2 + bх + с = 0, приводятся еще формулы корней уравнения x2+px+q=0 или x2+2px+q=0. Иногда использование этих формул упрощает вычисления, при наличии времени полезно их рассмотреть.
При изучении темы «Квадратные уравнения» рассматриваются и неполные квадратные уравнения. Обычно они изучаются перед выводом корней общего квадратного уравнения. Хотя различные виды неполных квадратных уравнении имеют разные алгоритмы решения, при изучении данной темы необходимо показать, что общая формула корней применима и для этих случаев.
Важным моментом в изучении квадратных уравнений является рассмотрение теоремы Виета, которая утверждает наличие зависимости между корнями и коэффициентами квадратного уравнения. Сложность освоения теоремы Виета связана с несколькими обстоятельствами. Прежде всего требуется учитывать различие прямой и обратной теоремы. В прямой теореме Виета даны квадратное уравнение и его корни; в обратной — только два числа, а квадратное уравнение появляется в заключении теоремы. Учащиеся часто совершают ошибку, обосновывая свои рассуждения неверной ссылкой на прямую или обратную теорему Виета. Например, при нахождении корней квадратного уравнения подбором ссылаться нужно на обратную теорему Виета, а не на прямую, как часто делают учащиеся. Для того чтобы распространить теоремы Виета на случай нулевого дискриминанта, приходится условиться, что в этом случае квадратное уравнение имеет два равных корня. Удобство такого соглашения проявляется при разложении квадратного трехчлена на множители.
Владение теорией квадратных уравнений существенно расширяет возможности решения уравнений методами, изучаемыми в курсе алгебры. Так, прямо сводятся к квадратным дробно-рациональные уравнения вида и биквадратные уравнения.
Еще один класс составляют алгебраические уравнения, которые разложением на множители могут быть сведены к линейному и квадратному уравнениям. Богатство и разнообразие приемов, имеющихся у учащихся, овладевших сведением различных уравнений к квадратным, служат необходимой предпосылкой перехода к завершающему этапу освоения методов решения уравнений. Особенно это сказывается на приложении к алгебраическому методу решения текстовых задач. Сюжеты их становятся более разнообразными, возрастает также сложность перевода на язык математики. В целом можно сказать, что освоение темы «Квадратные уравнения» поднимает учащихся на качественно новую ступень овладения содержанием школьной математики.
Глава II. Методико -
педагогические основы
использования самостоятельной
работы, как средство
обучения решению уравнений
в 5 - 9 классах.
§ 1.
Организация самостоятельной
работы при обучения
решению уравнений в 5 - 9
классах.
При традиционном способе преподавания учитель часто ставит ученика в положение объекта передаваемой ему извне информации. Такой постановкой образовательного процесса учитель искусственно задерживает развитие познавательной активности ученика, наносит ему большой вред в интеллектуальном и нравственном отношении.
«Знание только тогда знание, когда оно приобретено усилиями своей мысли, а не памятью», — эти слова Л. Н. Толстого должны стать смыслом работы учителя.
Самостоятельную деятельность учащихся можно и нужно организовывать на различных уровнях: от воспроизведения действий по образцу и узнавания объектов путем их сравнения с известным образцом до составления модели и алгоритма действий в нестандартных ситуациях.
Учителю Необходимо учитывать, что при составлении заданий для самостоятельной работы степень сложности должна отвечать учебным возможностям детей.
Переход с одного уровня на другой должен осуществляться постепенно, только когда учитель будет убежден, что учащийся справится со следующим уровнем самостоятельности. Иначе в атмосфере спешки и нервозности у ученика возникают пробелы в знаниях.
Очень важно, чтобы содержание самостоятельной работы, форма и время ее выполнения отвечали основным целям обучения данной теме на данном этапе.
В то же время учителю нужно знать, что злоупотребление самостоятельной работой в учебном процессе также вредно, как и ее недооценка. Бывает так, что учитель включает в урок самостоятельную работу без особой необходимости, просто ради разнообразия, не продумав ее содержание и форму организации. Результаты бывают плачевны: или дети не готовы выполнить задание, или не хватило времени и т. п. А в результате — зря потрачено драгоценное время урока. Но если, составляя план урока, учитель тщательно продумал место и время самостоятельной работы; четко определил ее общее содержание, разбил задания по разным уровням сложности, то она сыграет свою положительную роль.
Поэтому учителю очень важно знать формы и виды самостоятельных работ, их место в процессе обучения.
Но нельзя забывать, что на успехи ученика огромное влияние оказывает настрой самого учителя. Здесь очень важен известный психологам эффект Резенталя — Якобсона. Эти исследователи провели следующий эксперимент: они давали учителям заведомо неправильную информацию о показателях умственного развития детей. Как выяснилось, последующие достижения учеников зависели от этой информации, т. е. от мнения учителя о возможностях ученика. Те дети, которые воспринимались учителем как более одаренные (хотя таковыми не являлись), показали большие сдвиги в учебе по сравнению с детьми, которых учитель считал менее одаренными.
Вот почему так важно умение учителя создать в классе доброжелательную атмосферу, особенно во время выполнения самостоятельных работ.
В зависимости от целей, которые ставятся перед самостоятельными работами, они могут быть:
1 Смысл обучающих самостоятельных работ заключается в самостоятельном выполнении школьниками данных учителем заданий в ходе объяснения нового материала. Цель таких работ — развитие интереса к изучаемому материалу, привлечение внимания каждого ученика к тому, что объясняет учитель. Здесь сразу выясняется непонятное, выявляются сложные моменты, дают себя знать пробелы в знаниях, которые мешают прочно усвоить изучаемый материал.
Самостоятельные работы по формированию знаний проводятся на этапе подготовки к введению нового содержания, а также при непосредственном введении нового содержания, при первичном закреплении знаний, т. е. сразу после объяснения нового, когда знания учащихся еще непрочны. Учителю необходимо знать следующие особенности обучающих самостоятельных работ:
их надо составлять в основном из заданий репродуктивного характера, проверять немедленно и не ставить за них плохих оценок.
Так как
самостоятельные обучающие
Тема:
«Линейное уравнение
с двумя переменными».
Цель: 1. Дать понятие линейного уравнения с двумя переменными,
решения уравнения с двумя переменными; познакомить со свойствами уравнений с двумя переменными; закрепить понятие линейного уравнения с одной переменной.
2. Развивать вычислительные навыки, речь, мышление, память.
3. Воспитывать
самостоятельность активность , трудолюбие,
любовь к математике.
Оборудование:
карточку ax+by>c.
Ход урока.
-Здравствуйте,
садитесь, сегодня урок алгебры
проведу у вас я, зовут меня
Елена Федоровна
II. Сообщение темы и цели.
-Сегодня, на
уроке мы познакомимся с уравнениями
нового вида - «Линейными уравнениями
с двумя переменными».
III. Актуализация знаний учащихся.
-Посмотрите
на доску. Какие из этих
7х2+3х+5=0 5х+9=54
4х+9у=7 9(х2+6х+2)-8=30
x2/3+y2/2=1 4(х+2)+1=х+18.
-А как называются эти уравнения?
-Правильно это линейные уравнения с одной переменной.
-А кто скажет
определение линейного
-Уравнение вида ах=в, в котором x- переменная, а а и в – некоторые числа , называется линейным уравнением с одной переменной.
-Откройте учебники на стр. 27 , прочитайте это определение. Повтори…
-Приведите примеры линейных уравнений с одной переменной.
-Посмотрите
на доску, перед вами линейные
уравнения. Давайте вспомним
-Откройте тетради, запишите число, классная работа, тема: «Линейные уравнения с двумя переменными.»
-Все решают уравнения в тетрадях, а Оля пойдет к доске и решит с подробным объяснением первое уравнение:
2х+6=10
(Перенесем слагаемое без х в правую часть уравнения, изменив при этом его знак на противоположный: 2х=10-6 , вычислим результат 2х=4. Разделим обе части уравнения на 2, получим х=2).
-Молодец. Садись.
-Второе уравнение пойдет решать Саша.
2(х+3)+4=х-1.
(Раскроем скобки, для этого умножим 2 на каждое слагаемое суммы (х+3), получим 2х+6+4=х-1. Перенесем слагаемые, содержащие х в левую часть уравнения, а не содержащие х – в правую часть, изменив при этом знаки на противоположные.
2х-х= -6-4-1.
Приведем подобные слагаемые : х= - 11.
IV. Изучение нового материала.
-Ребята, а сегодня мы познакомимся с уравнениями нового вида.
-Пусть известно , что одно их двух чисел на 5 больше другого. Если первое число обозначить буквой х, а второе буквой у, то соотношение между ними можно записать в виде равенства х-у=5, содержащего 2 переменные. Такие уравнения называются уравнениями с двумя переменными или уравнениями с двумя неизвестными.
-Уравнениями с двумя переменными также являются уравнения:
5х+2у=10, -7х+у=5, х2+у2=20 , ху=12 (запись на доске).
-Из этих уравнений первые два имеют вид ах+ву=с, где а, в, с – числа. Такие уравнения называются линейными уравнениями с двумя переменными.
-Итак: Линейным уравнением с двумя переменными называется уравнение вида ах+ву=с где х и у – переменные, а, в, с, - некоторые числа .
Информация о работе Самостоятельная работа как средство обучения решению уравнений в 5 - 9 классах