Автор работы: Пользователь скрыл имя, 08 Октября 2010 в 08:28, Не определен
Цель работы является изучение фармакокинетики и фармокодинамики лекарственных веществ, а так же изучение влияния пищи на фармакокинетику и фармакодинамику лекарственных веществ
При приёме внутрь лекарственного вещества основного характера (амины) всасываются обычно в тонком кишечнике (сублингвальные лекарственные формы всасываются из ротовой полости, ректальные – из прямой кишки), лекарственные вещества нейтрального или кислого характера начинают всасываться уже в желудке.
Всасывание характеризуется скоростью и степенью всасывания (так называемой биодоступностью). Степень всасывания – это количество лекарственного вещества (в процентах или в долях), которое попадает в кровь при различных способах введения. Скорость и степень всасывания зависит от лекарственной формы, а также от других факторов. При приёме внутрь многие лекарственные вещества в процессе всасывания под действием ферментов печени (или кислоты желудочного сока) биотрансформируются в метаболиты, в результате чего лишь часть лекарственных веществ достигает кровяного русла. Степень всасывания лекарственного вещества из желудочно-кишечного тракта, как правило, снижается при приёме лекарства после еды.
Факторы, влияющие на всасывание:
Влияние лекарственных форм на всасывание, пути и способы введения лекарственных средств изучает специальный раздел фармакокинетики – биофармация.
Биофармация – это научная дисциплина фармации, занимающаяся исследованием влияния физических и физико-химических свойств действующих и вспомогательных веществ в лекарственных препаратах, производимых в различных лекарственных формах, но в одинаковых дозах, на их терапевтический эффект.
В биофармации выделяют не менее пяти биофармацевтических факторов:
Биофармацию рассматривают в комплексе с фармакокинетикой и фармакодинамикой. Изучение биофармации определенной лекарственной формы с помощью методов биофармацевтического анализа позволяет понять метаболизм лекарственных веществ (их биотрансформацию).
2. Распределение по органам и тканям.
В
организме лекарственное
Распределение лекарственных веществ в организме в большинстве случаев оказывается неравномерным и зависит от состояния биологических барьеров – стенки капилляров, клеточных мембран, плацентарного и гематоэнцефалического барьеров. Трудности преодоления последнего обусловлены его структурными особенностями: эндотелий капилляров мозга не имеет пор, в них отсутствует пиноцитоз, они покрыты глиальными элементами, выполняющими функцию дополнительной липидной мембраны (в ткань мозга легко проникают липофильные молекулы).
Распределение лекарственных веществ зависит также от сродства последних к разным тканям и от интенсивности тканевого кровоснабжения; обратимое связывание лекарственных веществ с плазменными (преимущественно альбумином) и тканевыми белками, нуклеопротеидами и фосфолипидами способствует их депонированию.
Необходимое условие реализации фармакологического действия лекарственного вещества – его проникновение в ткани-мишени; напротив, попадание лекарственного вещества в индифферентные ткани снижает действующую концентрацию и может привести к нежелательным побочным эффектам (например, к канцерогенезу).
Для количественной оценки распределения дозу лекарственного вещества делят на его начальную концентрацию в крови (плазме, сыворотке), экстраполированную к моменту введения, или используют метод статистических моментов. Получают условную величину объёма распределения (объём жидкости, в котором нужно растворить дозу, чтобы получить концентрацию, равную кажущейся начальной концентрации). Для некоторых водорастворимых лекарственных веществ величина объёма распределения может принимать реальные значения, соответствующие объёму крови, внеклеточной жидкости или всей водной фазы организма. Для жирорастворимых лекарственных средств эти оценки могут превышать на 1-2 порядка реальный объём организма благодаря избирательной кумуляции лекарственного вещества жировыми и другими тканями.
3. Метаболизм.
Лекарственные вещества выделяются из организма либо в неизмененном виде, либо в виде продуктов их биохимических превращений (метаболитов).
При метаболизме наиболее распространены процессы окисления, восстановления, гидролиза, а также соединение (конъюгация) с остатками глюкороновой, серной, уксусной кислот.
Биотрансформация (превращение) лекарственных веществ в организме (метаболическая трансформация, конъюгация) – превращение лекарственных веществ путем окисления (с помощью микросомальных ферментов печени при участии НАДФ, О2 и цитохрома Р-450), конъюгация – присоединение к лекарственному веществу или его метаболиту химических группировок и молекул эндогенных соединений (глюкуроновой и серной кислот, аминокислот, глютатиона, ацетильных и метильных групп).
Метаболиты, как правило, более полярны и лучше растворимы в воде по сравнению с исходным лекарственным веществом, поэтому быстрее выводятся с мочой.
Метаболизм может протекать спонтанно, но чаще всего катализируется ферментами (например, цитохромами), локализованными в мембранах клеток и клеточных органелл печени, почек, лёгких, кожи, мозга и других; некоторые ферменты локализованы в цитоплазме. Биологическое значение метаболических превращений – подготовка липорастворимых лекарственных средств к выведению из организма.
В процессе биотрансформации активность вещества обычно утрачивается, что лимитирует время его действия, а при заболеваниях печени или блокаде метаболизирующих ферментов продолжительность действия увеличивается (понятие об индукторах и ингибиторах микросомальных ферментов).
Различают
два этапа биотрансформации, каждый
из которых может иметь и
I этап – несинтетический (преобладает катаболическое направление реакций), идет перестройка молекул субстрата. Из лекарственных веществ путем окисления или, реже, восстановления образуются более полярные (а, значит, более гидрофильные)и менее активные метаболиты. Происходит это под влиянием монооксигеназной системы, основными компонентами которой являются цитохромы Р-450 и Р-В5, а также НАДФ (никотинамидадениндинуклеотид фосфорилированный). Однако под влиянием этой системы из ряда ксенобиотиков могут образовываться высоко реакционно-способные вещества, в том числе эпоксиды и азотсодержащие оксиды, которые при слабости обезвреживающих их систем (эпоксидгидраз, глутатионпероксидаз) способны взаимодействовать со структурными и ферментными белками и повреждать их. Они становятся чужеродными для организма и на них начинается выработка антител (аутоагрессия). Эпоксидыазотсодержащие оксиды и другие реакционно-способные метаболиты могут связываться и повреждать мембраны клеток, нарушат синтез нуклеиновых кислот, а, значит, вызывать канцерогенез, мутагенез, тератогенез.
2 этап – синтетический (анаболическая направленность реакций), образование конъюгатов с остатками различных кислот или других соединений. Образовавшиеся парные соединения фармакологически неактивны и высокополярны. Сульфатирование осуществляется в полной мере уже к рождению ребенка; метилирование - к концу 1-го месяца жизни; глюкуронидация – к концу 2-го; соединение с цистеином и глутатионом – в 3 мес, с глицином – в 6 мес. Недостаточное функционирование одного пути образования парных соединений в некоторых случаях может компенсироваться другим. Из-за незрелости ферментных систем печени в плазме крови новорожденных и грудных детей дольше остаются не подвергшиеся биотрансформации исходные жирорастворимые вещества, способные проникать в ткани и вызывать фармакологические эффекты. Вместе с тем, в печени детей этого возраста могут образовываться иные (иногда активные) метаболиты, необнаруживаемые у взрослых (например, теофиллин превращается в кофеин).
Лекарственные препараты могут влиять на скорость биотрансформации в печени, угнетая ее (индометацин, циметидин, аминазин, левомицетин, эритромицин, тетрациклин, новобиоцин, ПАСК и др.) или ускоряя (фенобарбитал, зиксорин, дифенилгидантоин (дифенин), бутадион, амидопирин, рифампицин, теофиллин, ноксирон, хлордиазепоксид и др.). Длительно назначая и/или комбинируя лекарственные препараты, необходимо учитывать такую возможность.
На биотрансформацию лекарств влияет печеночный кровоток. Если препараты (ацетилсалициловая кислота, имизин, изадрин, лидокаин, пропранолол (анаприлин), морфин, верапамил) способны быстро инактивироваться, то при остром гепатите, когда скорость кровотока не снижена (и даже может возрастать), их биотрансформация не меняется.
Она уменьшается при цирротическом процессе, с обеднением кровотока. Когда препараты (карбамазепин, дифенилгидантоин (дифенин), варфарин, дигитоксин, аминазин, хинвдин) медленно трансформируются в печени, более важна функция печеночных клеток, уровень активности ферментов которых снижался при гепатите.
4. Экскреция (выведение)
Экскреция – удаление ксенобиотика из организма может быть осуществлено печенью, почками, кишечником, легкими, железа ми внешней секреции. Главное значение имеют печень и почки.
Лекарственные вещества выводятся из организма с мочой, калом, потом, слюной, молоком, желчью, с выдыхаемым воздухом.
Выведение зависит от скорости доставки лекарственного вещества в выделительный орган с кровью и от активности собственно выделительных систем.
Выведение лекарственных веществ из организма в основном осуществляется с мочой и желчью: с мочой выводятся вещества путем фильтрации и активной кальциевой секреции, скорость их выведения зависит от скорости реабсорбции в канальцах за счет простой диффузии.
Фильтрация лекарств в клубочках осуществляется пассивно. Молекулярная масса веществ не должна быть больше 5-10 тыс., они не должны быть связаны с белками плазмы крови.
Секреция – процесс активный (с затратой энергии при участии специаль ных транспортных систем), не зависящий от связывания препаратов с белками плазмы крови.
Реабсорбция глюкозы, аминокислот, катионов и анионов происходит активно, а жирорастворимых веществ - пассивно. У детей младшего возраста (до 3 лет) эти процессы осуществляются медленнее, чем в более старшем возрасте. Способность почек к выведению лекарств путем фильтрации проверяется по экскреции эндогенного креатинина, так как оба процесса происходят параллельно с одинаковой скоростью.
Фильтрация – основной механизм экскреции почками лекарств, не связанных с белками плазмы крови. В связи с этим в фарма кокинетике элиминирующую функцию почек оценивают по скорости именно этого процесса.
При почечной недостаточности корректировку режима дозирования осуществляют с помощью расчета клиренса эндогенного креатинина (С/ кр). Клиренс – это гипотетический объем плазмы крови, который полностью очищается от лекарственного средства за единицу времени. В норме клиренс эндогенного креатинина составляет 80-120 мл/мин.
Кроме того, для определения клиренса эндогенного креатини на существуют специальные номограммы. Они составлены с учетом уровня креатинина в сыворотке крови, массы тела и роста больного.
Определив клиренс, врач пользуется соответствующими рекомендациями по дозированию и/или кратности назначения соответствующего препарата.
Конечно, для контроля за коррекцией доз и режимом введения наиболее информативно определение уровня лекарств в плазме крови при известных терапевтических и токсических концентрациях вещества, но сделать это бывает не всегда возможно.
Информация о работе Подробное описание фармокенетических свойств лекарственных веществ