Шпаргалка по "Геометрии"

Автор работы: Пользователь скрыл имя, 23 Января 2011 в 21:32, шпаргалка

Описание работы

Работа содержит ответы на вопросы по дисциплине "Геометрия".

Файлы: 1 файл

Аналитическая геометрия и мат. анализ(определения, формулы и понятия).docx

— 297.73 Кб (Скачать файл)

40. Основные правила  дифференцирования.

Теорема: Если f(x) и g(x) дифферен. в точке х, то:

Теорема о произв. сложной функции:

Если y(x)=f(u(x)) и существует f’(u) и u’(x), то существует y’(x)=f(u(x))u’(x).

Теорема о произв. обратной функции.

Таблица производных:

41. Дифференцирование  сложных ф-ций:

Производная сложной ф-ции = произведению производной  ф-ции по промежуточному аргументу и производной самого промежуточного аргумента по независимой переменной.

y`=f(x)*U`,или yx`=yU`*Ux`, или dy/dx=dy/dU=dU/dx

Например:

 

42. Дифференцирование  обратной ф-ции.

y=f(x), то x=j(y) - обратная ф-ция.

Для дифференцируемой ф-ции с производной, не = 0, производная  обратной ф-ции = обратной величине производной данной ф-ции, т.е. xy`=1/yx`.

Dy/Dx=1/(Dy/Dx) - возьмем предел от левой и правой части, учитывая, что предел частного = частному пределов:

lim(Dy/Dx)=1/(lim(Dy/Dx), т.е. yx`=1/xy или f`(x)=1/j`(x)

Например:

 

43. Производные степенных  и тригонометрических  функций.

Основные  формулы:  
 
 
 
 
 

44. Производные обратных  тригонометрических функций.

Основные  формулы:

Для сложных  функций:

 

45. Производные показательных  и логарифмических  функций.

Основные  формулы:

Если z=z(x) – дифференцируемая функция от x, то формулы имеют вид:

 

46. Логарифмическое  дифференцирование. Вывод производной степенной ф-ции.

y=ax - показательная ф-ция, y=xn - степенная, y=xx - показательно-степенная.

y=[f(x)]j(x) - показательно-степенная ф-ция.

lny=xlnx - найдем производную от левой и правой части, считая у ф-цией х.

(1/y)*y`=(lny)

(x*lnx)`=x`lnx+x*(lnx)`=lnx+1

y`=y*(lnx+1)=xx(lnx+1)

Операция, которая  заключается в последовательном применении к ф-ции y=f(x) сначала логарифмирование, а затем дифференцирование.

Степенная ф-ция:

1.y=xn, nlnx, y`/y=n/x=n*(x)-1

   y`=y*n*(x-1)=n*xn*x-1=n*xn-1

2.y=eU, где U=sinx

   U`=cosx, y`=(eU)`=eU*U`=esinx*cosx. 

47. Производная высших  порядков ф-ции  1й переменной.

y=f(x)

y``=(y`)`=lim((f`(x+Dx)-f`(x))/Dx)

                x®0

y```=(y``)`= lim((f``(x+Dx)-f``(x))/Dx)

f(n)(x)=[f(n-1)(x)]` 

48. Производные 1,2-го  порядка неявных  ф-ций. 

Неявной называется такая ф-ция у аргумента х, если она задана уравнением F(x,y)=0, не разрешенным относительно независимой переменной.

y=f(x), y=x2-1 - явные

F(x,y)=0, a2=x2+y2 - неявные ф-ции.

1)a2=x2+y2 - найдем производную, продифференцируем, считая у - сложной ф-цией х.

y`=2x+2y=0, т.к. а- постоянная

y*y`=-x, y`=-x/y

2) x3-3xy+y3=0

3x3-3(xy)`+3y2*y`=0 //:3

x2-(x`y+y`x)+y2*y`=0

y`y2-xy`=y-x2

y`=(y-x2)/(y2-x) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

49. Дифференциал ф-ции  и его геометрический  смысл. Св-ва дифференциала.

limy=A, y=A+a

limDy/Dx=y`, Dy/Dx=y`+a, Dy=y`Dx+aDx

Dx®0

Dy=y`Dx+e, где e-б.м.в., величина более высокого порядка малости,, чем Dx(a), и ее можно отбросить.

dy=y`Dx

Дифференциалом  ф-ции наз. величина, пропорциональная б.м. приращению аргумента Dх и отличающаяся от соответствующего приращения ф-ции на б.м.в. более высокого порядка малости, чем Dх.

Если y=x, то dy=dx=x`Dx=Dx, dx=Dx

Если y¹x, то dy=y`dx, y`=dy,dx

Геометрический  смысл: дифференциал - изменение ординаты касательной, проведенной к графику  ф-ции в точке (x0,f(x0)) при изменении x0 на величину Dx

Св-ва: 
1. (U
±V)`=U`±V`, то (U±V)`dx=U`dx±V`dx, d(U±V)=d(U±V)

2. (UV)`=U`V+V`U, то (UV)`dx=V`dU+U`dV

3.d(c)=c`dx=0*dx=0

4. d(U/V)`=(V`dU-U`dV)/V2. 

50.Теорема  Ролля.

Если функция  f(x) непрерывна на заданном промеж/ [a,b] деффер. на интервале (a,b)  f(a)=f(b) то существует т. с из интерв. (a,b), такая, что f’(c)=0.

 

51. Теорема Лагранжа.

Если функция  f(x) непрерывна на [a,b] и дефференцирована на (a,b), то сущест.

т. с(a,b), такая, что: f(b)-f(a)=f’(c)(b-a).

Доказательство: применим т.Коши, взяв только g(x)=x, тогда g’(x)=1¹0.

 

52. Теорема Коши.

Если f(x), g(x) удовл. трем условиям:

1). f(x), g(x) непрерыв. на промеж [a,b]

2). f(x), g(x) деффер. на интервале (a,b)

3). g’(x)¹0 на интер. (a,b), то сущ. т. с

g(b)¹g(a) (неравны по теореме Ролля).

1). F(x) – непрерывна на [a,b]

2). F(x) – деффиренцирована на (a,b)

3). F(a)=0 ; F(b)=0

по теореме Ролля  сущ. сÎ(a,b); F’(с)=0

 

 

 

 

53. Необходимые и достаточные признаки монотонности ф-ции:

Если x2>x1, f(x2)>f(x1), то ф-ция монотонно возрастает

Если x2>x1, f(x2)<f(x1), то ф-ция монотонно убывает

Монотонность - постоянство

Необходимые признаки:1)если ф-ция f(x) всюду в интервале возрастает, то ее производная в этом интервале неотрицательна (f`(x)>=0)

2)если ф-ция f(x) всюду в интервале убывает, то ее производная в этом интервале неположительная  (f`(x)<=0)

3)если ф-ция  f(x) всюду в интервале постоянна, то ее производная в этом интервале =0 (f`(x)=0)

Достаточные признаки монотонности: 1)если f`(x) в интервале положительна, то ф-ция f(x) возрастает в этом интервале.

2)если f`(x)<0, то ф-ция f(x) возрастает в этом интервале.

3)если f`(x)=0, то ф-ция f(x)=const на интервале.

x1<a<x2, x2-x1>0, x2>x1

1. если f`(a)>0, то f(x2)>f(x1)

2. если f`(a)<0, то f(x2)<f(x1)

3. если f`(a)=0, то f(x2)=f(x1) 

54. Экстремумы ф-ций. Признаки существования экстремума. Наибольшее и наименьшее значение ф-ции 1й переменной.

Точка х называется точкой max ф-ции, если значение ф-ции в этой точке - наименьшее в некоторой ее окрестности.

1- локальный  max

2- локальный min

3- глобальный max

4- глобальный min

если tga>0, то f`(x)>0

если tga<0, то f`(x)<0 
 
 
 
 
 

Необходимый признак экстремума: ф-ия f(x) может иметь max и min только в тех точках, в которых f`(x)=0 или не существует.

(В них можно построить ¥ касательных).

Достаточный признак: точка х0 является точкой экстремума, если ее производная в этой точке меняет знак:

- если с  “+” на “-”, то х0- т. max

- если с  “-” на “+”, то х0- т. min 

55. Выпуклость и вогнутость линий точки перегиба.

Линия называется выпуклой, если она пересекается с  любой своей секущей не более  чем в 2х точках.

Линия наз-ся вогнутой, если она целиком лежит  по 1 сторону от касательной, проведенной  в любой ее точке.

Точка перегиба - точка, отделяющая выпуклый участок дуги от вогнутого.

Необходимый признак выпуклости и вогнутости: если линия на интервале выпуклая, то ее 2я производная <=0; если линия на интервале вогнутая, то ее f``(x)>=0

Достаточный признак: если f``(x) всюду в интервале “-”, то линия в интервале выпуклая; если f``(x)>0, то линия вогнутая

Признаки  точки перегиба: чтобы X0 была т. перегиба, <=> чтобы у`` в этой точке = 0 и меняла знак при переходе х через х0. 
 
 
 
 
 
 
 
 
 
 
 
 
 

56. Асимптота графика  ф-ции.

Асимптота - прямая, к которой график ф-ции стремится, но никогда ее не пересекает.

1) прямая  х=х0 назыв-ся вертикальной асимптотой графика ф-ции f(x)=y, если при х®х0 |f(x)|®+¥ (вида x=b)

2) y=kx+b, ,y=f(x) - общее ур-е наклонной асимптоты

lim[f(x)-(kx+b)]=0, f(x)=kx+b+a(б.м.в.) по св-ву x®¥                                                      пределов.

Информация о работе Шпаргалка по "Геометрии"