Шпаргалка по "Эконометрика"

Автор работы: Пользователь скрыл имя, 20 Февраля 2012 в 23:45, шпаргалка

Описание работы

Работа содержит ответы на вопросы по дисциплине "Эконометрика".

Файлы: 1 файл

Ekonometrika.docx

— 343.76 Кб (Скачать файл)

 и 

где:         ,   – значения критерия Стьюдента для коэффициентов   и   соответственно; 

        – остаточная дисперсия уравнения регрессии;  

        – число точек в выборке; 

        – число переменных в выборке, для парной линейной регрессии  .

Полученные фактические  значения критерия Стьюдента сравниваются с табличными значениями , полученными из распределения Стьюдента. Если оказывается, что  , то соответствующий коэффициент статистически значим, в противном случае нет. Второй вариант проверки статистической значимости коэффициентов – определить вероятность появления критерия Стьюдента   и сравнить с уровнем значимости  .

22.Виды уравнения регрессии. линейная  регрессия

Общий принцип. Простейший способ аппроксимации по МНК произвольных данных sk - с помощью полинома первой степени, т.е. функции вида y(t) = a+bt, которую обычно называют линией регрессии. С учетом дискретности данных по точкам tk, для функции остаточных ошибок имеем:s(a, b) =[(a+btk) - sk]2.

Для вычисления оценок коэффициентов дифференцируем функцию остаточных ошибок по аргументам a и b, приравниваем полученные уравнения  нулю и формируем два нормальных уравнения системы:2((a+btk)-sk) ºa1 + btk –sk = 0,

2((a+btk)-sk)tkº atk + btk2 – sktk = 0,

Решение данной системы уравнений в явной  форме для К-отсчетов:

b = [Ktksk –tksk] / [Ktk2 – (tk)2] = (- ) / (- ).

a = [sk – btk] /K = - b

Полученные значения коэффициентов используем в уравнении  регрессии y(t) = a+bt. Прямая (s – ) = b (t - ) называется линией регрессии s по t. Для получения линии регрессии t по s,  (t - )  = b (s – ), аргумент bв этой формуле заменяется на значениеb = (- ) / (- ).

По аналогичной  методике вычисляются коэффициенты и любых других видов регрессии, отличаясь только громоздкостью  соответствующих выражений.

Реализация  в Mathcad. Линейная регрессия в системе Mathcad выполняется по векторам аргумента Х и отсчетов Y функциями:

-intercept(X,Y) – вычисляет  параметр а, смещение линии  регрессии по вертикали;

-slope(X,Y) – вычисляет   параметр b, угловой коэффициент  линии регрессии.

Расположение  отсчетов по аргументу Х произвольное. Функцией corr(X,Y) дополнительно можно  вычислить коэффициент корреляции Пирсона. Чем он ближе к 1, тем точнее обрабатываемые данные соответствуют  линейной зависимости.

Пример выполнения линейной регрессии приведен на рис.

 полиномиальная  регрессия 

Одномерная  полиномиальная регрессия с произвольной степенью n полинома и с произвольными координатами отсчетов в Mathcad выполняется функциями:

-regress(X,Y,n) – вычисляет  вектор S для функции interp(…), в  составе которого находятся коэффициенты ki полинома n-й степени;

-interp(S,X,Y,x) – возвращает  значения функции аппроксимации  по координатам х.

Функция interp(…) реализует вычисления по формуле:

f(x) = k0 + k1 x1 + k2 x2 + … + knxn ≡ ki xi.

Значения коэффициентов ki могут быть извлечены из вектора S функциейsubmatrix(S, 3, length(S), 0, 0).

На рис. приведен пример полиномиальной регрессии с  использованием полиномов 2, 3 и 8-й степени. Степень полинома обычно устанавливают  не более 4-6 с последовательным повышением степени, контролируя среднеквадратическое отклонение функции аппроксимации  от фактических данных. Нетрудно заметить, что по мере повышения степени  полинома функция аппроксимации  приближается к фактическим данным, а при степени полинома, равной количеству отсчетов минус 1, вообще превращается в функцию интерполяции данных, что  не соответствует задачам регрессии. 

Одномерная полиномиальная регрессия.

Зональная регрессия. Функция regress по всей совокупности точек создает один аппроксимирующий полином. При больших координатных интервалах с большим количеством отсчетов и достаточно сложной динамике изменения данных рекомендуется применять последовательную локальную регрессию отрезками полиномов малых степеней. В Mathcad это выполняется отрезками полиномов второй степени функцией

loess(X, Y, span),

которая формирует  специальный вектор S для функции interp(S,X,Y,x). Аргумент span> 0 в этой функции (порядка 0.1-2) определяет размер локальной  области и подбирается с учетом характера данных и необходимой  степени их сглаживания (чем больше span, тем больше степень сглаживания  данных).На рис. приведен пример вычисления регрессии модельной кривой (отрезка  синусоиды) в сумме с шумами. Вычисления выполнены для двух значений span с  определением среднеквадратического  приближения к базовой кривой. При моделировании каких-либо случайных  процессов и сигналов на высоком  уровне шумов по минимуму среднеквадратического  приближения может определяться оптимальное значение параметра span.

нелинейная  регрессия Линейное суммирование произвольных функций. В Mathcad имеется возможность выполнения регрессии с приближением к функции общего вида в виде весовой суммы функций fn(x): f(x, Kn) = K1f1(x) + K2f2(x) + … + KNfN(x),при этом сами функции fn(x) могут быть любого, в том числе нелинейного типа. С одной стороны, это резко повышает возможности аналитического отображения функций регрессии. Но, с другой стороны, это требует от пользователя определенных навыков аппроксимации экспериментальных данных комбинациями достаточно простых функций.

  

 Обобщенная  регрессия

  Реализуется обобщенная регрессия по векторам X, Y и f функцией

  • linfit(X,Y,f),

которая вычисляет  значения коэффициентов Kn. Вектор f должен содержать символьную запись функций fn(x). Координаты xk в векторе Х могут быть любыми, но расположенными в порядке возрастания значений х (с соответствующими отсчетами значений yk в векторе Y). Пример выполнения регрессии приведен на рис. 15.4.1. Числовые параметры функций f1-f3 подбирались по минимуму среднеквадратического отклонения.

      Регрессия общего типа. Второй вид нелинейной регрессии реализуется путем подбора параметров ki к заданной функции аппроксимации с использованием функции

genfit(X,Y,S,F),

которая возвращает коэффициенты ki, обеспечивающие минимальную среднюю квадратическую погрешность приближения функции регрессии к входным данным (векторы Х и Y координат и отсчетов). Символьное выражение функции регрессии и символьные выражения ее производных по параметрам kiзаписываются в вектор F. Вектор S содержит начальные значения коэффициентов ki для решения системы нелинейных уравнений итерационным методом. Пример использования метода приведен на рис. 15.4.2.

      Типовые функции регрессии Mathcad. Для простых типовых формул аппроксимации предусмотрен ряд функций регрессии, в которых параметры функций подбираются программой Mathcad самостоятельно. К ним относятся следующие функции:

      è expfit(X,Y,S) – возвращает вектор, содержащий коэффициенты a, b и c экспоненциальной функции y(x) = a·exp(b·x)+c. В вектор S вводятся начальные значения коэффициентов a, b и c первого приближения. Для ориентировки по форме аппроксимационных функций и задания соответствующих начальных значений коэффициентов на рисунках слева приводится вид функций при постоянных значениях коэффициентов a и c.

-lgsfit(X,Y,S) – то же, для выражения y(x) = a/(1+c·exp(b·x)). 
 

-pwrfit(X,Y,S) – то же, для выражения y(x) = a·xb+c.

-sinfit(X,Y,S) –   то же, для выражения y(x) = a·sin(x+b)+c. Подбирает коэффициенты для синусоидальной  функции регрессии. Рисунок синусоиды  общеизвестен.

-logfit(X,Y) – то же, для выражения  y(x)=a ln(x+b)+c. Задания начального приближения  не требуется.

-medfit(X,Y) –   то же, для выражения y(x) = a+b·x, т.е.  для функции линейной регрессии.  Задания начального приближения  также не требуется. График  – прямая линия.

      

      На  рис.приведен пример реализации синусоидальной регрессии модельного массива данных по базовой синусоиде в сопоставлении  с зональной регрессией полиномом  второй степени. Как можно видеть из сопоставления методов по средним  квадратическим приближениям к базовой  кривой и к исходным данным, известность  функции математического ожидания для статистических данных с ее использованием в качестве базовой для функции  регрессии дает возможность с  более высокой точностью определять параметры регрессии в целом  по всей совокупности данных, хотя при  этом кривая регрессии не отражает локальных особенностей фактических  отсчетов данной реализации. Это имеет  место и для всех других методов  с заданием функций регрессии.

 сглаживание   данных Сглаживание данных, как  искаженных помехами, так и статистических  по своей природе, можно считать  частным случаем регрессии без  определения символьной формы  ее функции. В Mathcad для сглаживания  применяются следующие функции:

-supsmooth(X,Y) – возвращает  вектор линейно сглаженных данных Y, метод наименьших квадратов  по k отсчетам с адаптивным выбором  значения k с учетом динамики изменения  данных. Значения вектора Х должны  идти в порядке возрастания.

-ksmooth(X,Y,b) – вычисляет  вектор сглаженных данных на  основе распределения Гаусса. Параметр b задает ширину окна сглаживания  и должен быть в несколько  раз больше интервала между  отсчетами по оси х.

-medsmooth(Y,b) - вычисляет  вектор сглаженных данных по  методу скользящей медианы с  шириной окна b, которое должно  быть нечетным числом.

      Сопоставление методов сглаживания приведено  на рис. 15.5.1. Как можно видеть на этом рисунке, качество сглаживания функциями supsmooth(X,Y) и ksmooth(X,Y,b) практически идентично (при соответствующем выборе параметра b). Медианный способ уступает по своим  возможностям двум другим. Можно заметить также, что на концевых точках интервала  задания данных качество сглаживания  ухудшается, особенно в медианном  способе, который вообще не может  выполнять свои функции на концевых интервалах длиной b/2.     

 предсказание  зависимостей 

      ФункцияMathcad

predict(Y,n,K),

где n – степень полинома аппроксимации вектора равномерно распределенных данных Y, позволяет вычислить вектор К точек предсказания (экстраполяции) поведения произвольного сигнала за пределами его задания (по возрастанию координат х). Предсказание тем точнее, чем более гладкую форму имеет заданный сигнал.

Пример использования  функции приведен на рис. 15.6.1 для  гладкой и статистически зашумленной  сигнальной кривой. Степень аппроксимирующего  полинома определяет глубину использования  входных данных и может быть достаточно небольшой для гладких и монотонных сигналов. Ошибка прогнозирования увеличивается  по мере удаления от заданных данных. 

23.функция Кобба-Дугласа, показатели эластичности

Коэффициенты  эластичности

Коэффициенты  эластичности наряду с индексами  корреляции и детерминации для нелинейных форм связи применяются для характеристики зависимости между результативной переменной и факторными переменными. С помощью коэффициентов эластичности можно оценить степень зависимости  между переменными х и у.

Коэффициент эластичности показывает, на сколько процентов изменится величина результативной переменной у, если величина факторной переменной изменится на 1 %.

   В общем  случае коэффициент эластичности рассчитывается по формуле:

   где

– первая производная результативной переменной у по факторной переменной x.

Коэффициенты  эластичности могут быть рассчитаны как средние и точечные коэффициенты.

Средний коэффициент  эластичности характеризует, на сколько процентов изменится результативная переменная у относительно своего среднего уровня

если факторная  переменная х изменится на 1 % относительного своего среднего уровня

Общая формула  для расчёта коэффициента эластичности для среднего значения 

факторной переменной х:

   где

Информация о работе Шпаргалка по "Эконометрика"