Автор работы: Пользователь скрыл имя, 08 Декабря 2010 в 08:31, Не определен
Цель данного курсового проекта - составить план производства требуемой продукции, обеспечивающий максимальную прибыль от выпускаемой продукции, свести данную задачу к задаче линейного программирования, решить её симплекс - методом и составить программу для решения задачи этим методом на ЭВМ.
Содержание
1.
Содержание……………………………………………………
2. 1. Пояснительная записка………………………………………….3-5 стр.
3. 1.1.Введение………………………………………………
4. 2. Теоретическая часть…………………………………………..11-23 стр.
5 2.1.Элементы
теории матричных игр...........................
6. 2.2.Решение матричных игр в чистых стратегиях ………………..16-18 стр.
7. 2.3.Решение
матричных игр в смешанных стратегиях
путём сведения к задаче линейного программирования………………………………….
8. 3. Практическая часть…………………………………………...24-28 стр.
9. 3.1.Построение математической модели задачи ……………………..24 стр.
10. 3.2.Выбор метода решения и привидения задачи к каноническому виду……………………………………………. ………………………...25,26 стр.
11. 3.3.Решение задачи
путем сведения к задаче линейного
программирования……………………………………
12. - Блок схема к поставленной задачи……………………………..29 стр.
13. - Программа к поставленной задачи (программный код)…30-39 стр.
14. 3.4.Анализ результата решения поставленной задачи……………40-44 стр.
15. 4.
Вывод курсового проектирования…………………………..45-
16.
Заключение……………………………………………………
17. Список основных источников ……………………….…………….48 стр.
18.
Приложение. Диаграмма взаимодействия……....………………...
Цель данного курсового проекта - составить план производства требуемой продукции, обеспечивающий максимальную прибыль от выпускаемой продукции, свести данную задачу к задаче линейного программирования, решить её симплекс - методом и составить программу для решения задачи этим методом на ЭВМ.
1. КРАТКИЙ ОБЗОР АЛГОРИТМОВ РЕШЕНИЯ ЗАДАЧ ДАННОГО ТИПА 1.1 Математическое программирование.
Математическое программирование занимается изучение экстремальных задач и поиском методов их решения. Задачи математического
программирования формулируются следующим образом :
найти экстремум некоторой функции многих переменных f ( x1, x2, ... , xn ) при ограничениях gi ( x1, x2, ... , xn ) ( bi , где gi - функция, описывающая ограничения, ( - один из следующих знаков ( , ( , ( , а bi - действительное число, i = 1, ... , m. f называется функцией цели ( целевая функция ). Линейное программирование - это раздел математического программирования, в котором рассматриваются методы решения экстремальных задач с линейным функционалом и линейными ограничениями, которым должны удовлетворять искомые переменные. Задачу линейного программирования можно сформулировать так . Найти max [pic] при условии : a11 x1 + a12 x2 + . . . + a1n xn ( b1 ; a21 x1 + a22 x2 + . . . + a2n xn ( b2 ; . . . . . . . . . . . . . . . . . . . . . . . . . . . . am1 x1 + am2 x2 + . . . + amn xn ( bm ; x1 ( 0, x2 ( 0, . . . , xn ( 0 . Эти ограничения называются условиями не отрицательности. Если все ограничения заданы в виде строгих равенств, то данная форма называется канонической. В матричной форме задачу линейного программирования, записывают следующим образом. Найти max cT x при условии A x ( b ; x ( 0 , где А - матрица ограничений размером (m(n), b(m(1) - вектор-столбец свободных членов, x(n ( 1) - вектор переменных, сТ = [c1, c2, ... , cn ] - вектор-строка коэффициентов целевой функции. Решение х0 называется оптимальным, если для него выполняется условие сТ х0 ( сТ х , для всех х ( R(x). Поскольку min f(x) эквивалентен max [ - f(x) ] , то задачу линейного программирования всегда можно свести к эквивалентной задаче максимизации. Для решения задач данного типа применяются методы:
1) графический;
2) табличный ( прямой, простой ) симплекс - метод;
3) метод искусственного базиса;
4) модифицированный симплекс - метод;
5) двойственный симплекс - метод.
1.2 Табличный симплекс - метод Для его применения необходимо, чтобы знаки в ограничениях были вида “ меньше либо равно ”, а компоненты вектора b - положительны. Алгоритм решения сводится к следующему :
1. Приведение системы ограничений к каноническому виду путём введения дополнительных переменных для приведения неравенств к равенствам.
2. Если в исходной системе ограничений присутствовали знаки “ равно ” или “ больше либо равно ”, то в указанные ограничения добавляются искусственные переменные, которые так же вводятся и в целевую функцию со знаками, определяемыми типом оптимума.
3. Формируется симплекс-таблица.
4. Рассчитываются симплекс- разности.
5. Принимается решение об окончании либо продолжении счёта.
6. При необходимости выполняются итерации.
7. На каждой итерации определяется вектор, вводимый в базис, и вектор, выводимый из базиса. Таблица пересчитывается по методу Жордана Гаусса или каким-нибудь другим способом.
1.3 Метод искусственного базиса. Данный метод решения применяется при наличии в ограничении знаков “ равно ”, “ больше либо равно ”, “ меньше либо равно ” и является модификацией табличного метода. Решение системы производится путём ввода искусственных переменных со знаком, зависящим от типа оптимума, т.е. для исключения из базиса этих переменных последние вводятся в целевую функцию с большими отрицательными коэффициентами, а в задачи минимизации с положительными. Таким образом, из исходной получается новая задача. Если в оптимальном решении задачи нет искусственных переменных, это решение есть оптимальное решение исходной задачи. Если же в оптимальном решении задачи хоть одна из искусственных переменных будет отлична от нуля, то система ограничений исходной задачи несовместна и исходная задача неразрешима.
1.4 Модифицированный
симплекс-метод. В основу данной разновидности
симплекс-метода положены такие особенности
линейной алгебры, которые позволяют в
ходе решения задачи работать с частью
матрицы ограничений. Иногда метод называют
методом обратной матрицы. В процессе
работы алгоритма происходит спонтанное
обращение матрицы ограничений по частям,
соответствующим текущим базисным векторам.
Указанная способность делает весьма
привлекательной машинную реализацию
вычислений вследствие экономии памяти
под промежуточные переменные и значительного
сокращения времени счёта. Хорош для ситуаций,
когда число переменных n значительно
превышает число ограничений m. В целом,
метод отражает традиционные черты общего
подхода к решению задач линейного программирования,
включающего в себя канонизацию условий
задачи, расчёт симплекс -разностей, проверку
условий оптимальности, принятие решений
о коррекции базиса и исключение Жордана
Гаусса. Особенности заключаются в наличии
двух таблиц - основной и вспомогательной,
порядке их заполнения и некоторой специфичности
расчётных формул.
ПОСТАНОВКА ЗАДАЧИ:
Для производства трёх видов продукции используется три вида сырья. Нормы затрат каждого из видов сырья на единицу продукции данного вида, запасы сырья, а также прибыль с единицы продукции.
Определить
план выпуска продукции для получения
максимальной прибыли. Оценить каждый
из видов сырья, используемых для производства
продукции.
Соответственно:
1. Первое с чего начинаем, это строим математическую модель задачи;
2. Выбираем метод решения задачи и приводим задачу к каноническому виду;
3. Решаем задачу путём сведения к задаче линейного программирования;
4. Затем строим блок схему к задачи с написанием программы на языке С++Builder 6.;
5. Дальнейшим этапом
моей работы будет анализ результата решения
выполненной мною задачи.
1.1. Введение
1 Математические методы
Математическое моделирование как инструмент познания завоевывает все новые и новые позиции в различных областях деятельности человека. Оно становится главенствующим направлением в проектировании и исследовании новых систем, анализе свойств существующих систем, выборе и обосновании оптимальных условий их функционирования и т.п.
Изучение
математического моделирования
открывает широкие возможности
для осознания связи информатики
с математикой и другими
Общее в моделях то, что во всех случаях модель в определённом смысле заменяла сам исследуемый объект. Вместо исходного объекта (оригинала) использовалась его модель, модель являлась представлением объекта в некоторой форме, отличной от формы его реального существования.
Модель – это материальный или идеальный объект, который строится для изучения исходного объекта (оригинала) и который отражает наиболее важные качества и параметры оригинала.
Практически во всех науках о природе, живой и неживой, об обществе, построение и использование моделей является мощным орудием познания. Реальные объекты и процессы бывают столь многообразны и сложны, что лучшим способом изучения часто является построение модели, отражающей лишь какую – то часть реальности.
В любом случае модель строится для с целью узнать про объект что – либо новое или сохранить об объекте информацию, которая может стать недоступной в будущем.
Как правило, процесс изучения, связанный с использованием моделей и называемый моделированием не заканчивается созданием одной модели. Построив модель и получив с её помощью, какие – либо результаты, соотносят их с реальностью и если это соотношение даёт неудовлетворительные результаты, то в построенную модель вносят коррективы или даже создают другую модель. В случае достижения хорошего соответствия с реальностью выясняют границы применения модели. Это очень важный вопрос, он решается путём сравнения модели с оригиналом путём сравнения предсказаний, полученных с помощью компьютерной модели. Если это сравнение даёт удовлетворительные результаты, то модель принимают на вооружение, если нет, приходится создавать другую модель.
Математическое моделирование относится к классу знакового моделирования, при этом модели могут создаваться из любых математических объектов, чисел, функций, уравнений, графиков, графов.
Практически во всех науках построение и использование моделей является мощным орудием познания.
В моделировании существует два пути:
Модель может быть похожей копией объекта, выполненной из другого материала и в другом масштабе, с отсутствием ряда деталей.
Модель может отражать реальность более абстрактно – словесным описанием формализованным по каким – то правилам, соотношениям.
Существует
следующая классификация
Вербальные
Эти модели используют последовательности предложений на формализованных диалектах естественного языка для описания той или иной области действительности.
Математические
Это очень широкий класс знаковых моделей, основанных на формальных языках над конечными алфавитами, широко использующих те или иные математические методы.
Информационные
Это класс знаковых моделей описывающих информационные процессы в системах самой разнообразной природы.
Граница между вербальными, математическими и информационными моделями может быть проведена весьма условно; можно считать информационные методики подклассом математических моделей.
Информация о работе Применение методов линейного программирования