Автор работы: Пользователь скрыл имя, 13 Марта 2011 в 16:34, курсовая работа
Даниэль Канеман, сегодня имеющий израильское и американское гражданство, родился в Тель-Авиве в 1934 году. Он получил степень бакалавра психологии и математики в Еврейском университете Иерусалима, где он преподавал с 1961 по 1978 год. Далее, с 1978 по 1986 год, был период преподавания в Колумбийском университете. В период 1986-1994 г.г. Канеман занимал должность профессора в Беркли, где получил степень доктора, а также в университете Принстона.
Внутренняя согласованность образца входных данных является основным показателем степени уверенности в прогнозе, основанном на этих входных данных. Например, люди выражают больше уверенности в прогнозе средне
го балла успеваемости студента, чей табель за первый год обучения состоит полностью из В (4 балла), чем в прогнозе среднего балла студента, в чьем табеле за первый год обучения много оценок, как А (5 баллов), так и С (3 балла). Высоко согласованные образцы наиболее часто наблюдаются, когда входные переменные очень избыточны или взаимосвязаны. Следовательно, люди склонны быть уверенными в прогнозах, основанных на избыточных входных переменных. Однако элементарное правило в статистике корреляции, утверждает, что, если у нас есть входные переменные определенной валидности, прогноз, основанный на нескольких таких входных данных, может достигать более высокой точности, когда переменные независимы друг от друга, чем если они являются избыточными или взаимосвязанными. Таким образом, избыточность входных данных уменьшает точность, даже если она увеличивает уверенность, таким образом, люди часто уверены в прогнозах, которые, скорее всего, будут ошибочными [2].
Предположим, что большая группа детей была протестирована с помощью двух подобных версий теста на способности. Если некто отберет десять детей из числа тех, кто справился лучше всех с одной из этих двух версий, он обычно будет разочарован выполнением ими второй версии теста. И напротив, если некто отберет десять детей из числа тех, кто хуже всех справился с первой версией теста, то в среднем он обнаружит, что с другой версией они справились несколько лучше. Обобщая, рассмотрим две переменные X и Y, которые имеют одинаковое распределение. Если выбрать людей, чьи средние X оценки отклоняются от среднего X на к единиц, тогда среднее от их Y шкалы будет обычно отклоняться от среднего Y меньше чем на к единиц. Эти наблюдения иллюстрируют общее явление известное как регресс к среднему, которое было открыто Гальтоном более чем 100 лет назад.
В обычной жизни все мы сталкиваемся с большим количеством случаев регресса к среднему, сравнивая, например, рост отцов и сыновей, уровень интеллекта мужей и жен, или результаты сдачи экзаменов, следующих один за другим. Тем не менее, у людей отсутствуют предположения по этому поводу. Во-первых, они не ожидают регрессии во многих контекстах, где она должна произойти. Во-вторых, когда они признают возникновение регрессии, они часто изобретают неверные объяснения причин. [2] Мы полагаем, что явление регресса остается неуловимым, потому что оно несовместимо с мнением о том, что прогнозируемый результат должен быть максимально репрезентативен по отношению к входным данным, и, следовательно, значение переменной результата должно быть настолько же крайним, как и значение входной переменной.
Неспособность признать смысл регрессии может иметь пагубные последствия, как было проиллюстрировано в следующих наблюдениях [2]. При обсуждении учебных полетов, опытные инструкторы отметили, что похвала за исключительно мягкое приземление обычно при следующей попытке сопровождается более неудачным приземлением, в то время как резкая критика после жесткого приземления обычно сопровождается улучшением результатов при следующей попытке. Инструкторы сделали вывод, что словесные поощрения вредны для обучения, в то время как выговоры приносят пользу, вопреки принятой психологической доктрине. Это заключение несостоятельно из-за присутствия регресса к среднему. Как и в других случаях, когда экзамены следуют один за другим, улучшение обычно следует за плохим выполнением работы, а ухудшение - за отлично проделанной работой, даже если преподаватель или инструктор никак не реагирует на достижения учащегося при первой попытке. Поскольку инструкторы похвалили своих учеников после хороших приземлений и поругали их после плохих, они пришли к ошибочному и потенциально вредному заключению, что наказание является более эффективным, чем награда.
Таким образом, неспособность понимать эффект регрессии ведет, к тому, что эффективность наказания оценивается слишком высоко, а эффективность награды недооценивается. В социальном взаимодействии, также, как и в обучении, награда обычно применяется, когда работа выполнена хорошо, и наказание, когда работа выполнена плохо. Следуя только закону регрессии, поведение, вероятней всего, улучшится после наказания и, скорее всего, ухудшится после награды. Следовательно, выходит так, что, по чистой случайности, людей поощряют за то, что они наказывают других, и наказывают за их поощрение. Люди, в целом, не знают об этом обстоятельстве. Фактически, неуловимая роль регрессии в определении очевидных последствий награды и наказания, кажется, ускользнула от внимания ученых, работающих в этой области.
Доступность
Бывают ситуации, в которых люди оценивают частоту класса или вероятность событий на основе легкости, с которой они вспоминают примеры случаев или события. Например, можно оценивать вероятность риска сердечного приступа среди людей средних лет, вспоминая такие случаи среди своих знакомых. Похожим образом некто может оценивать вероятность того, что некоторое бизнес-предприятие потерпит неудачу, представляя себе различные трудности, с которыми оно могло бы столкнуться. Эта эвристика оценки называется доступностью. Доступность очень полезна для оценки частоты или вероятности событий, потому что события, принадлежащие большим классам, обычно вспоминаются и быстрее, чем случаи менее частых классов. Однако на доступность воздействуют и другие факторы, кроме частоты и вероятности. Следовательно, уверенность относительно доступности ведет к вполне прогнозируемым предубеждениям, некоторые из которых проиллюстрированы ниже.
Предубеждения, обусловленные степенью восстанавливаемости событий в памяти
Когда размер класса оценивается на основе доступности его элементов, класс, элементы которого легко восстанавливаются в памяти, будет казаться более многочисленным, чем класс такого же размера, но элементы которого, менее доступны и хуже вспоминаются. При простой демонстрации этого эффекта, испытуемым зачитали список известных людей обоих полов, и затем попросили оценить, было ли в списке больше мужских имен, чем женских. Различные списки были предоставлены разным группам тестируемых. В некоторых из списков мужчины были более известны, чем женщины, а в других, женщины были более известны, чем мужчины. В каждом из списков, испытуемые ошибочно считали, что класс (в данном случае пол), в котором были более известные люди, был более многочисленным [2].
В дополнение к узнаваемости, имеются другие факторы, такие как яркость, которая влияет на восстанавливаемость событий в памяти. Например, если человек наблюдал воочию пожар в здании, то он будет считать возникновение таких несчастных случаев, наверное, более субъективно вероятным, чем, если бы, он прочитал об этом пожаре в местной газете. Кроме того, недавние происшествия, вероятно, будут вспоминаться несколько проще, чем более ранние. Часто бывает, что субъективная оценка вероятности возникновения дорожных происшествий временно повышается, когда человек видит около дороги перевернутый автомобиль.
Предубеждения, обусловленные эффективностью направления поиска
Предположим, из английского текста наугад выбрано слово (из трех букв или больше). Что является более вероятным, то, что слово начинается с буквы г или что г является третьей буквой? Люди подходят к решению этой проблемы, вспоминая слова, которые начинаются с г (road - дорога), и слова, которые имеют г в третьей позиции (саг - автомобиль), и оценивают относительную частоту, основываясь на легкости, с которой слова этих двух типов приходят на ум. Поскольку гораздо легче искать слова по первой букве, чем по третьей, большинство людей считают, что больше слов, которые начинаются с этой согласной, чем слов, в которых тот же самый согласный появляется в третьей позиции. Они делают такой вывод даже для таких согласных, как г или к,
Различные задачи требуют различных направлений поиска. Например," предположим, Вас попросили оценить частоту, с которой слова с абстрактным значением (мысль, любовь) и конкретным значением (дверь, вода) появляются в письменном английском языке. Естественный способ ответить на этот вопрос - найти контексты, в которых эти слова могли бы появляться. Кажется, легче вспомнить контексты, в которых может быть упомянуто абстрактное значение (любовь в женских романах), чем вспомнить контексты, в которых упоминается слово с конкретным значением (например, дверь). Если частота слов определяется на основании доступности контекстов, в которых они появляются, слова с абстрактным значением, будут оценены как относительно более многочисленные, чем слова с конкретным значением. Этот стереотип наблюдался в недавнем исследовании (Galbraith и Underwood, 1973), которое показало, что частота возникновения слов с абстрактным значением была намного выше частоты слов с конкретным значением, в то время как их объективная частота равна. Оценивалось также, что абстрактные слова появлялись в намного большем разнообразии контекстов, чем слова с конкретным значением.
Предубеждения, обусловленные способностью к представлению образов
Иногда нужно оценить частоту класса, элементы которого не хранятся в памяти, а могут быть созданы согласно определенному правилу. В таких ситуациях, обычно воспроизводятся некоторые элементы, а частота или вероятность оценивается той легкостью, с которой могут быть построены соответствующие элементы. Однако легкость воспроизведения соответствующих элементов не всегда отражает их фактическую частоту, и этот способ оценки приводит к предубеждениям. Для иллюстрации этого рассмотрим группу из 10 человек, которые формируют комитеты, состоящие из k членов, причем 2 < k < 8. Сколько различных комитетов, состоящих из k членов может быть сформировано? Правильный ответ на эту проблему дается биноминальным коэффициентом (k10), который достигает максимума, равного 252 для k = 5. Ясно, что число комитетов, состоящих из k членов, равняется числу комитетов, состоящих из (10 - ft) членов, потому что для любого комитета, состоящего из k членов, существует единственно возможная группа, состоящая из (10 - k) человек, не являющихся членами комитета.
Одним из способов ответить без вычисления - это мысленно создать комитеты, состоящие из k членов, и оценить их количество, используя легкость, с которой они приходят на ум. Комитеты, состоящие из небольшого количества членов, например, 2, более доступны, чем комитеты, состоящие из большого количества членов, например, 8. Самая простая схема создания комитетов - разделение группы на непересекающиеся множества. Сразу видно, что легче создать пять непересекающихся комитетов по 2 члена в каждом, в то время как невозможно сгенерировать и двух непересекающихся комитетов по 8 членов. Следовательно, если частота оценивается за счет способности представить это, или доступностью к мысленному воспроизведению, будет казаться, что маленьких комитетов больше, чем больших, в отличие от правильной параболической функции. Действительно, когда тестируемых-неспециалистов просили оценить число различных комитетов разных размеров, их оценки представляли собой монотонно-убывающую функцию от размера комитета [1]. Например, средняя оценка числа комитетов, состоящих из 2 членов, была 70, в то время как оценка для комитетов, состоящих из 8 членов — 20 (правильный ответ - 45 в обоих случаях).
Способность представлять образы играет важную роль в оценке вероятностей возникновения реальных жизненных ситуаций. Риск, с которым связана опасная экспедиция, например, оценивается, посредством мысленного воспроизведения непредвиденных обстоятельств, для преодоления которых у экспедиции нет достаточного оборудования. Если многие из таких трудностей ярко изображаются, экспедиция может показаться чрезвычайно опасной, хотя легкость, с которой воображаются бедствия, вовсе не обязательно отражает их фактическую вероятность. Наоборот, если возможную опасность трудно вообразить, или она просто не приходит на ум, риск, связанный с каким-либо событием, может быть чрезвычайно недооценен.
Чепмен и Чепмен (Chapman and Chapman, 1969) описали интересное предубеждение в оценке частоты, с которой два события произойдут одновременно. Они предоставили испытуемым-неспециалистам информацию относительно нескольких гипотетических пациентов с психическими расстройствами. Данные по каждому пациенту включали клинический диагноз и рисунки пациента. Позже испытуемые оценили частоту, с которой каждый диагноз (такой как паранойя или мания преследования) сопровождался различными особенностями рисунка (специфической формой глаз). Испытуемые заметно переоценили частоту совместного появления двух естественных событий, таких как мания преследования и специфическая форма глаз. Это явление получило название иллюзорная корреляция. В ошибочных оценках представленных данных, испытуемые «заново открыли» многое из уже известных, но необоснованных, клинических знаний относительно интерпретации рисуночного теста. Иллюзорный эффект корреляции был чрезвычайно стойкий по отношению к противоречащим данным. Он сохранился даже, когда взаимосвязь между признаком и диагнозом была фактически негативной, что не позволило испытуемым определить действительные отношения между ними.
Доступность является естественным объяснением эффекта иллюзорной корреляции. Оценка того, насколько часто два явления взаимосвязаны и происходят одновременно, может быть основано на силе ассоциативной связи между ними. Когда ассоциация сильна, можно, скорее всего, прийти к выводу, что события часто происходили одновременно. Следовательно, если ассоциация между событиями крепкая, то, по оценке людей, они будут часто происходить одновременно. Согласно этой точке зрения, иллюзорная корреляция между диагнозом мании преследования и специфической формой глаз на рисунке, к примеру, появляется из-за того, что мания преследования скорее ассоциируется с глазами, чем с любой другой частью тела.
Продолжительный жизненный опыт научил нас, что, в общем, элементы больших классов вспоминаются лучше и быстрее, чем элементы менее частотных классов; что более вероятные события легче вообразить, чем маловероятные; и что ассоциативные связи между событиями укрепляются, когда события часто происходят одновременно. В результате, человек получает в свое распоряжение процедуру (эвристику доступности) для оценки размера класса, вероятность события, или частота, с которой могут одновременно происходить события, оцениваются той легкостью, с которой могут быть выполнены соответствующие ментальные процессы вспоминания, воспроизведения или ассоциации. Однако, как показали предшествующие примеры, эти процедуры оценивания систематически приводят к ошибкам.