Автор работы: Пользователь скрыл имя, 19 Января 2015 в 21:05, контрольная работа
1 1. Основы токсикологической химии. Организация и основы судебно-медицинской экспертизы в Российской Федерации
45 2. Биохимическая токсикология
55 3. Группа веществ, изолируемых минерализацией ("Металлические яды")
109 4. Группа веществ, изолируемых дистилляцией ("Летучие яды")
156 5. Группа веществ, изолируемых из биологического материала экстракцией и сорбцией (Лекарственные и наркотические вещества)
309 6. Группа веществ, изолируемых экстракцией и сорбцией (Пестициды)
328 7. Химико-токсикологический анализ веществ, изолированием из объекта настаиванием с водой, с последующим диализом, а также требующих или не требующих особых методов изолирования
Негативное действие «металлических ядов» на организм человека проявляется в их выраженном нейротоксическом действии. Токсичность объясняется тем, что в организме они связываются с функциональными группами белков, аминокислот, пептидов и других жизненно важных веществ, в результате чего нарушаются нормальные функции клеток тканей. Образующиеся в организме комплексы металлов очень прочные, поэтому изолировать металлы и обнаружить их невозможно без предварительного разрушения органического вещества, с которым они связаны. Для этого применяются методы минерализации.
По вопросу металлических загрязнений существует несколько точек зрения. Согласно одной из них металлы периодической системы делят на 3 группы: металлы как незаменимые факторы питания (эссенциальные макро- и микроэлементы); неэссенциальные или необязательные для жизнедеятельности металлы; токсические металлы. Согласно другой точке зрения все металлы необходимы для жизнедеятельности, но в определенных количествах. Эта точка зрения выражается формулой: «Все вещества токсичны, но отсутствие веществ также вредно».
По воздействию на организм человека металлы классифицируют следующим образом:
1) металлы, необходимые при питании человека и животных (Со, Сu, Cr, Ge, Fe, Mn, Mo, Ni, Se, Si, V, Zn).
2) металлы, имеющие токсикологическое значение (As, Be, Cd, Cu, Co, Cr, Hg, Mo, Ni, Pb, Pd, Se, Sn, Ti, V, Zn).
При этом следует отметить, что 10 из перечисленных элементов отнесено к обеим группам.
Биологически эссенциальные металлы имеют пределы доз, определяющих их дефицит, оптимальный уровень и уровень токсического действия. Токсические металлы в низких дозах не оказывают вредного действия и не несут биологических функций, однако в высоких дозах оказывают токсическое действие. Тем не менее, существуют металлы, которые проявляют сильно выраженные токсикологические свойства при самых низких концентрациях и не выполняют какой-либо полезной функции. К таким токсичным элементам относят ртуть, кадмий, свинец, мышьяк. Они не являются ни жизненно необходимыми, ни благотворными, но даже в малых дозах приводят к нарушению нормальных метаболических функций организма.
Ртуть, кадмий, свинец, мышьяк, медь, стронций, цинк, железо Объединеная комиссия ФАО/ВОЗ по пищевому кодексу (Codex Alimentarius) включила в число компонентов, содержание которых контролируется при международной торговле продуктов питания. В России и СНГ подлежат контролю еще 6 элементов (сурьма, никель, хром, алюминий, фтор, йод), а при наличии показаний могут контролироваться и некоторые другие металлы. Медико-биологическими требованиями СанПиН 1078-01 определены критерии безопасности для следующих металлов: свинец, кадмий, ртуть, медь, цинк, олово, железо.
Несмотря на широкое распространение d-элементов в природе (в рудах, почве, воде и воздухе), их суммарное содержание в тканях и органах человека в норме не превышает 10-2 % массы тела. С точки зрения токсического воздействия металлов на организм наибольшую опасность представляет постоянно возрастающее антропогенное загрязнение окружающей среды, включая биоту
Элементы с неизвестной биологической ролью, но постоянно присутствующие в организме, называются примесными. Уровень примесных элементов может колебаться в пределах нескольких порядков. Для этих элементов, как правило, достоверно установлена токсичность.
Деление элементов на необходимые и примесные в определенной мере условно. Это объясняется прежде всего тем, что неорганические соединения различных элементов имеют широкий спектр биологической активности. И дефицит, и избыток жизненно необходимого элемента наносят вред организму. При дефиците необходимого элемента организму наносится существенный ущерб, например, из – за неактивности ферментов.
Оценка нормы содержания элементов, необходимость которых пока не доказана, возможна при определении примесных элементов в организме сельских жителей, меньше подвергающихся антропогенным влияниям окружающей среды. Полученные результаты используют как нормативные и сравнивают с ними токсическую нагрузку на организм в промышленных регионах. Например, были обнаружены близкие уровни свинца, бария, кадмия, стронция, мышьяка в костной ткани (эпифиз бедренной кости) жителей разного возраста и обоего пола, проживающих в одном из регионов Подмосковья.
У жителей промышленных регионов с возрастом увеличивается содержание некоторых примесных элементов, особенно у рабочих крупных металлургических и гальванических предприятий. Например, содержание кадмия, бария, свинца и стронция в образцах костной ткани более чем у 3000 человек, проживавших в разных районах Российской Федерации, различалось в сотни раз. Наименьшие колебания и самый низкий уровень этих элементов отмечены у жителей сельской местности.
Накопление металлов в организме может быть вызвано природными факторами (эндемические провинции) или техногенными загрязнениями.
3.2. ТОКСИДИНАМИКА И ТОКСИКОКИНЕТИКА МЕТАЛЛИЧЕСКИХ ЯДОВ
Механизм токсического действия соединений тяжёлых металлов, а также мышьяка и сурьмы, складывается из местного и резорбтивного эффектов. Местное действие проявляется в деструкции ткани и зависит от способности этих соединений к диссоциации. В результате уплотнения и денатурации белка образуется некроз тканей со струпом. Кислотный остаток (анион) сильной кислоты (хлороводородной, азотной) в составе молекулы металлического яда приводит к более выраженному деструктивному действию, чем действие соединений с кислотным остатком слабой кислоты (уксусной, угольной и др.).
В основе резорбтивного действия лежит блокирование функционально активных групп белков–ферментов, структурных белков и вытеснение специфического металла в металлсодержащих ферментах.
Функции рецепторов могут выполнять сульфгидрильные, гидроксильные, карбоксильные, амино- и фосфорсодержащие группы белковых и других жизненно важных соединений в организме. Свойствами рецепторов также могут обладать некоторые аминокислоты, нуклеиновые кислоты, ферменты, витамины, гормоны и ряд других веществ.
В зависимости от химического строения и свойств ядовитых металлов и соответствующих им рецепторов прочность химической связи между ними может быть различной. Взаимодействие рецепторов с ядовитыми веществами может осуществляться за счёт образования ковалентных, ионных, ион - дипольных и водородных связей, а также за счёт сил Ван–дер–Ваальса. Из этих связей наиболее прочными являются ковалентные. Непрочными являются ионные связи, затем водородные, а менее прочными являются связи, обусловленные силами Ван-дер-Ваальса.
Отравление солями тяжёлых металлов и другими неорганическими веществами обусловлено связыванием катионов указанных соединений с сульфгидрильными группами (рецепторами), содержащимися в молекулах белков. Связь между катионами некоторых металлов и сульфгидрильными группами является довольно прочной (ковалентной). Сульфгидрильные группы белковых веществ особенно прочно связываются с ионами мышьяка, сурьмы, ртути, висмута и некоторых других металлов.
В результате потери протеидами многих физико-химических и биологических свойств нарушается белковый, углеводный и жировой обмен. Разрушается структура клеточных оболочек, что приводит к выходу из клеток калия и проникновение внутрь натрия и воды.
Соединения тяжёлых металлов, а также мышьяка и сурьмы избирательно токсичны в основном для специфического эпителия почек, печени, кишечника, эритроцитов и нервных клеток, где наблюдается повышенная концентрация этих веществ.
Соединения тяжёлых металлов, мышьяка и сурьмы могут поступать в организм пероральным, ингаляционным путём, через кожу и слизистые оболочки, при парентеральном введении.
Основной путь поступления - пероральный. При попадании в желудочно-кишечный тракт (ЖКТ) эти вещества всасываются в ионизированном виде, чему способствует присутствие хлоридов в желудочном соке и щелочная реакция кишечного сока.
Всасывание из ЖКТ является суммой сложных реакций, в процессе которых соединения металлов могут подвергаться разнообразным превращениям, способствующим их проникновению через клеточные мембраны. Под влиянием пищеварительных соков может меняться форма всасывания соединений.
Всасывание металлов и неметаллов в ЖКТ происходит в разных его отделах и в различной степени, но преимущественно в верхнем отделе тонкой кишки.
В то же время, много металлов, которые мало или почти не сорбируются в пищеварительном тракте. Это обычно связано с образованием в последнем плохо растворимых соединений. Всасывание кадмия в пищеварительном тракте составляет менее 30 %.
Известную роль играет также форма, в которой минеральные соединения поступают в организм. Хорошо усваиваются соединения металлов из пищи, где они находятся обычно в виде комплексов с органическими соединениями.
Проникновение металлов и их соединений через кожу, как правило не имеет практического значения, хотя известно, что многие из них могут резорбтироваться этим путём. Однако определённую опасность интоксикации при всасывании через кожу могут оказывать металлы, такие как ртуть, таллий, хром и некоторые другие.
Ещё реже металлы попадают в организм ингаляционным путём. Такой путь поступления возможен в обычных условиях для паров ртути, либо для паров других металлов при плавлении. Таким же образом могут проникать в организм соединения металлов и других веществ, находящихся в аэрозолях и некоторых других формах.
Превращения. Металлы, неметаллы и их соединения в организме обычно переходят из одной формы в другую. Это происходит на всём пути пребывания яда в организме: всасывании, транспорте, распределении, выделении. Металлы, преимущественно с переменной валентностью, подвергаются в организме восстановлению и окислению. Так, 5-ти валентный мышьяк восстанавливается в организме до более токсичного 3-х валентного, 6-ти валентный хром - до 3-х валентного, легко вступающего в реакции комплексообразования с белками. Предполагается также восстановление в организме марганца и свинца. Металлическая ртуть, как известно, окисляется до одновалентной. Наибольшее разнообразие характерно при образовании комплексов.
Большую часть пребывания в организме металлы существуют в виде комплексов с белками, пептидами и аминокислотами.
Транспорт. Металлы и их соединения переносятся кровью и тканевой жидкостью в различном состоянии. Хорошо растворимые соли металлов находятся в крови в истинном водном растворе, то есть в виде ионов, однако, в том случае, если диссоциация идёт не до конца, в крови одновременно присутствуют ионы (катионы) и нейтральные молекулы. В ионной форме циркулируют в крови и тканевой жидкости определённая часть бария, марганца, свинца и ртути.
Для большинства металлов характерна циркуляция, как в свободном, так и в связанном состоянии с разнообразными биокомплексонами. Особенно велика транспортная роль плазменных белков, обратимо связывающих многие металлы.
В транспорте многих металлов и неметаллов большую роль играет их способность накопления в клетках крови, главным образом, в эритроцитах. В эритроцитах находится почти весь мышьяк крови, значительная часть селена, основная часть свинца.
Длительная циркуляция в крови определяется формой, в которой находится металл. Свободные ионы очень скоро удаляются из крови, крупные коллоидные - также быстро захватываются ретикуло-эндотелиальной системой, в основном, печени и селезёнки, дисперсные коллоидные комплексы циркулируют в крови значительно дольше.
Распределение. На пути проникновения в клетки металлы преодолевают ряд пограничных мембран. По современным представлениям клеточные мембраны имеют белково-липидную структуру и активно участвуют в процессах транспорта и обмена веществ, благодаря присоединению к ним ряда энзимных систем. Перенос металлов в виде катионов осуществляется при помощи ферментных систем, включённых в структуру мембран.
Распределение металлов по органам и тканям в известной мере определяется физико – химическими свойствами, образующихся в крови соединений. Крупные коллоидные частицы, как упоминалось, захватываются ретикулоэндотелиальной системой печени, селезёнки, почек, костного мозга, где они временно задерживаются. Несравненно более прочным депо является скелетная система, где, как правило, откладываются металлы, поступающие преимущественно в виде хорошо растворимых соединений.
Избирательное накопление металлов в некоторых органах объясняется большим содержанием в них лигандов, с которыми металлы образуют комплексы. Таким критическим органом для ртути, кадмия и таллия являются почки, белки которых богаты тиоловыми группами. Относительно высокое содержание многих металлов в железах внутренней секреции связано с интенсивным кровоснабжением и специфическими функциями.
Выделение. При вдыхании аэрозолей металлов выделение последних происходит при помощи мерцательного эпителия верхних дыхательных путей и фагоцитов, в основном до резорбции в кровь.
Выделение из организма металлов и их соединений происходит, в основном, через почки и ЖКТ. Наиболее быстро выделяются металлы, находящиеся в ионной форме, затем лабильно связанные и, в последнюю очередь, – фракция металлов, образующих прочные комплексы. Путь преимущественной элиминации резорбированного металла через почки или ЖКТ в определённой степени зависит от формы его циркуляции и депонирования. Металлы, находящиеся в крови в молекулярно – дисперсном состоянии, в виде ионов или в виде слабых комплексов, выделяются преимущественно с мочой. Это, в первую очередь, щелочные металлы. Выше упоминалось, что многие тяжёлые металлы, в том числе свинец, марганец, ртуть и др. частично циркулируют в крови и тканевой жидкости в виде ионов и слабых комплексов и образуют в тканях лабильные соединения. Таким образом, даже тяжёлые металлы, выделение которых происходит в основном через пищеварительный тракт, частично элиминируют и через почки.