Автор работы: Пользователь скрыл имя, 29 Мая 2010 в 18:37, Не определен
1.Основные положения теории химического строения А.М. Бутлерова
1. Атомы в молекулах соединены друг с другом в определенной последовательности согласно их валентностям. Последовательность межатомных связей в молекуле называется ее химическим строением и отражается одной структурной формулой (формулой строения).
2. Химическое строение можно устанавливать химическими методами. (В настоящее время используются также современные физические методы).
3. Свойства веществ зависят от их химического строения.
В тоже время пиридин обладает явными ароматическими свойствами. Однако наличие в кольце сопряжения атома азота приводит к серьёзному перераспределению электронной плотности, что приводит к сильному снижению активности пиридина в реациях электрофильного ароматического замещения. В таких реакциях реагируют преимущественно мета-положения кольца.
Для пиридина характерны реакции ароматического нуклеофильного замещения, протекающие преимущественно по орто-пара положениям кольца. Такая реакционная способность свидетельствует о электроннодефицитной природе пиридинового кольца, что может быть обобщено в следующем эмпирическом правиле: реакционная способность пиридина как ароматического соединения примерно соответствует реакционной способности нитробензола.
Применение. Применяют в синтезе красителей, лекарственных веществ, инсектицидов, в аналитической химии, как растворитель многих органических и некоторых неорганических веществ, для денатурирования спирта.
Безопасность. Пиридин токсичен, действует на нервную систему, кожу.
57.
Биологическая роль.
Никотиновая кислота является производным
пиридина. Она всасывается в желудке и
двенадцатиперстной кишке, а затем подвергается
аминированию, в результате чего получается
никотиноамид, который в организме в комплексе
с белками образует более 80 ферментов.
В этом и заключается основная физиологическая
роль витамина B5. Так, никотиновая кислота
входит в состав таких важных окислительно-восстановительных
ферментов как дегидрогенез, катализирующих
отнятие водорода от окисляющихся при
этом органических веществ. Отнятый таким
образом водород эти ферменты передают
далее окислительно-восстановительным
ферментам, в состав которых входит рибофлавин.
Кроме того, в организме млекопитающих
из никотинамида (ниацина) и никотиновой
кислоты образуются пиридиновые нуклеотиды,
служащие коферментами НАД и НАДФ. Недостаток
этих предшественников у животных вызывает
пеллагру - заболевание, проявляющееся
симптомами со стороны кожи, желудочно-кишечного
тракта и нервной системы (дерматит, диарея,
деменция). В качестве коферментов
НАД и НАДФ предшественники никотиновой
кислоты участвуют во многих окислительно-восстановительных
реакциях, катализирующих дегидрогеназами.
Биологический эффект никотиновой кислоты
проявляется в виде стимуляции секреторной
функции желудка и пищеварительных желез
(в ее присутствии в желудке повышается
концентрация свободной соляной кислоты).
Под влиянием витамина B5 происходит увеличение
биосинтеза гликогена и снижение гипергликемии,
повышение детоксицирующей функции печени,
расширение кровеносных сосудов, улучшение
микроциркуляции крови.
Между никотиновой кислотой и серосодержащими аминокислотами существует связь. Повышенное выделение с мочой метилникотинамида при белковой недостаточности нормализуется включением в рацион серосодержащих аминокислот. При этом нормализуется также содержание фосфопиринуклеотидов в печени.
58. Пиримидин (C4N2H4, Pyrimidine, 1,3- или м-диазин, миазин) — гетероциклическое соединение, имеющее плоскую молекулу, простейший представитель 1,3-диазинов.
Физические свойства. Пиримидин — бесцветные кристаллы с характерным запахом.
Химические свойства. Молекулярная масса пиримидина 80,09 г/моль. Пиримидин проявляет свойства слабого двукислотного основания, так как атомы азота могут присоединять протоны за счет донорно-акцепторной связи, приобретая при этом положительный заряд. Реакционная способность в реакциях электрофильного замещения у пиримидина снижена из-за снижения электронной плотности в положениях 2,4,6, вызванного наличием двух атомов азота в цикле. Замещение становится возможным только при наличии электронодонорных заместителей и направляется в наименее дезактивированное положение 5. Однако в противовес этому пиримидин активен по отношению к нуклеофильным реагентам, которые атакуют 2, 4 и 6 атомы углерода в цикле.
Получение. Пиримидин получают восстановлением галогенизированых пиримидиновых производных. Или из 2,4,6-трихлор пиримидина, получаемого обработкой барбитуровой кислоты хлороксидом фосфора.
Производные пиримидина широко распространены в живой природе, где участвуют во многих важных биологических процессах. В частности такие производные как цитозин, тимин, урацил входят в состав нуклеотидов, являющихся структурными единицами нуклеиновых кислот, пиримидиновое ядро входит в состав некоторых витаминов группы B, в частности B1, коферментов и антибиотиков.
59. Пурин (C5N4H4, Purine) — гетероциклическое соединение, простейший представитель имидазо[4,5-d]пиримидинов.
Производные пурина играют важную роль в химии природных соединений (пуриновые основания ДНК и РНК; кофермент NAD; алкалоиды, кофеин, теофиллин и теобромин; токсины, сакситоксин и родственные соединения; мочевая кислота) и, благодаря этому, в фармацевтике.
Аденин — азотистое основание, аминопроизводное пурина (6-аминопурин). Образует две водородных связи с урацилом и тимином (комплементарность).
Физические свойства. Аденин — бесцветные кристаллы, которые плавятся при температуре 360—365 С. Обладает характерным максимумом поглощения (λмакс) при 266 ммк (pH 7) с коэффициентом молярной экстинкции (εмакс) 13500.
Химическая формула С5H5N5, молекулярный вес 135,14 г/моль. Аденин проявляет основные свойства (pKa1=4.15; pKa2=9,8). При взаимодействии с азотной кислотой, аденин теряет аминогруппу, превращаясь в гипоксантин (6-оксипурин). В водных растворах кристаллизуется в кристаллогидрат с тремя молекулами воды.
Растворимость. Хорошо растворим в воде, особенно горячей, с понижением температуры воды, растворимость аденина в ней падает. Плохо растворим в спирте, в хлороформе, эфире, а также в кислотах и щелочах — не растворим.
Распространенность и значение в природе. Аденин входит в состав многих жизненно важных для живых организмов соединений, таких как: аденозин, аденозинфосфотазы, аденозинфосфорные кислоты, нуклеиновые кислоты, адениновые нуклеотиды и др. В виде этих соединений аденин широко распространен в живой природе.
Гуани́н — азотистое основание, аминопроизводное пурина (6-окси-2-аминопурин), является составной частью нуклеиновых кислот. В ДНК, при репликации и транскрипции образует три водородных связи с цитозином (комплементарность). Впервые выделен из гуано.
Физические свойства. Бесцветный, аморфный кристаллический порошок. Температура плавления 365 °C. Раствор гуанина в HCl флуоресцирует. В щелочных и кислых средах имеет по два максимума абсорбции (λмакс) в ультрафиолетовом спектре: при 275 и 248 ммк (pH 2) и 246 и 273 ммк (pH 11).
Химические свойства. Химическая формула — C5H5N5O, молекулярная масса — 151,15 г/моль. Проявляет основные свойства, pKa1= 3,3; pKa2= 9,2; pKa3=12,3. Реагирует с кислотами и щелочами с образованием солей.
Растворимость. Хорошо растворим в кислотах и щелочах, плохо растворим в эфире, спирте, аммиачных и нейтральных растворах, нерастворим в воде.
Качественные реакции. Для определения гуанина его осаждают метафосфорной и пикриновой кислотами, с диазосульфокислотой в растворе Na2CO3 дает красное окрашивание.
Распространение в природе и значение. Входит в состав нуклеиновых кислот.
60. Нуклеозиды — это гликозиламины, содержащие азотистое основание, связанное с сахаром (рибозой или дезоксирибозой).
Нуклеозиды могут быть фосфорилированы киназами клетки по первичной спиртовой группе сахара, при этом образуются соответствующие нуклеотиды.
Нуклеоти́ды — фосфорные эфиры нуклеозидов, нуклеозидфосфаты. Свободные нуклеотиды, в частности АТФ, цАМФ, АДФ, играют важную роль в энергетических и информационных внутриклеточных процессах, а также являются составляющими частями нуклеиновых кислот и многих коферментов.
Нуклеотиды являются сложными эфирами нуклеозидов и фосфорных кислот. Нуклеозиды, в свою очередь, являются N-гликозидами, содержащими гетероциклический фрагмент, связанный через атом азота с C-1 атомом остатка сахара.
Строение нуклеотидов. В природе наиболее распространены нуклеотиды, являющиеся β-N-гликозидами пуринов или пиримидинов и пентоз - D-рибозы или D-2-рибозы. В зависимости от структуры пентозы различают рибонуклеотиды и дезоксирибонуклеотиды, которые являются мономерами молекул сложных биологических полимеров (полинуклеотидов) — соответственно РНК или ДНК.[1]
Фосфатный остаток в нуклеотидах обычно образует сложноэфирную связь с 2'-, 3'- или 5'-гидроксильными группами рибонуклеозидов, в случае 2'-дезоксинуклеозидов этерифицируются 3'- или 5'-гидроксильные группы.
Соединения, состоящие из двух нуклеотидовых молекул, называются динуклеотидами, из трёх — тринуклеотидами, из небольшого числа — олигонуклеотидами, а из многих — полинуклеотидами, или нуклеиновыми кислотами.
Названия нуклеотидов представляют собой аббревиатуры в виде стандартных трёх- или четырёхбуквенных кодов.
Если аббревиатура начинается со строчной буквы «д» (англ. d), значит подразумевается дезоксирибонуклеотид; отсутствие буквы «д» означает рибонуклеотид. Если аббревиатура начинается со строчной буквы «ц» (англ. c), значит речь идёт о циклической форме нуклеотида (например, цАМФ).
Первая прописная буква аббревиатуры указывает на конкретное азотистое основание или группу возможных нуклеиновых оснований, вторая буква — на количество остатков фосфорной кислоты в структуре (М — моно-, Д — ди-, Т — три-), а третья прописная буква — всегда буква Ф («-фосфат»; англ. P).
Латинские и русские коды для нуклеиновых оснований:
A — А: Аденин; G — Г: Гуанин; C — Ц: Цитозин; T — Т: Тимин (5-метилурацил), не встречается в РНК, занимает место урацила в ДНК; U — У: Урацил, не встречается в ДНК, занимает место тимина в РНК.