Автор работы: Пользователь скрыл имя, 29 Мая 2010 в 18:37, Не определен
1.Основные положения теории химического строения А.М. Бутлерова
1. Атомы в молекулах соединены друг с другом в определенной последовательности согласно их валентностям. Последовательность межатомных связей в молекуле называется ее химическим строением и отражается одной структурной формулой (формулой строения).
2. Химическое строение можно устанавливать химическими методами. (В настоящее время используются также современные физические методы).
3. Свойства веществ зависят от их химического строения.
Связи, поддерживающие третичную структуру белка, также слабые. Они возникают, в частности, вследствие гидрофобных взаимодействий. Это силы притяжения между неполярными молекулами или между неполярными участками молекул в водной среде. Гидрофобные остатки некоторых аминокислот в водном растворе сближаются, "слипаются" и стабилизируют, таким образом, структуру белка. Кроме гидрофобных сил, в поддержании третичной структуры белка существенную роль играют электростатические связи между электроотрицательными и электроположительными радикалами аминокислотных остатков. Третичная структура поддерживается также небольшим числом ковалентных дисульфидных -S-S-связей, возникающих между атомами серы серусодержащих аминокислот. Надо сказать, что и третичная; структура белка не является конечной. К макромолекуле белка нередко оказываются присоединенными макромолекулы такого же белка или молекулы иных белков. Например, сложная молекула гемоглобина - белка, находящегося в эритроцитах, состоит из четырех макромолекул глобинов: двух альфа-цепей и двух бета-цепей, каждая из которых соединена с железосодержащим гемом. В результате их объединения образуется функционирующая молекула гемоглобина. Только в такой упаковке гемоглобин работает полноценно, т. е. способен переносить кислород. Благодаря соединению нескольких молекул белков между собой образуется четвертичная структура. Если пептидные цепи уложены в виде клубка, то такие белки называются глобулярными. Если полипептидные цепи уложены в пучки нитей, они носят название фибриллярных белков. Начиная со вторичной структуры пространственное устройство (конформация) макромолекул белка, как мы выяснили, поддерживается в основном слабыми химическими связями. Под влиянием внешних факторов (изменение температуры, солевого состава среды, рН, под действием радиации и иных факторов) слабые связи, стабилизирующие макромолекулу, рвутся, и структура белка, а следовательно, и его свойства изменяются. Этот процесс называется денатурацией . Разрыв части слабых связей, изменения конформации и свойств белка происходят и под действием физиологических факторов (например, под действием гормонов). Таким образом регулируются свойства белков: ферментов, рецепторов, транспортеров. Эти изменения структуры белка обычно легко обратимы. Разрыв большого числа слабых связей ведет к денатурации белка, которая может быть необратимой (например, свертывание яичного белка при кипячении яиц). Иногда и денатурация белка имеет биологический смысл. Например, паук выделяет капельку секрета и приклеивает ее к какой-нибудь опоре. Затем, продолжая выделять секрет, он слегка натягивает ниточку, и этого слабого натяжения оказывается достаточно, чтобы белок денатурировался, из растворимой формы перешел в нерастворимую, и нить приобрела прочность.
35-36. Моносахариды (от греческого monos: единственный, sacchar: сахар), — органические соединения, одна из основных групп углеводов; самая простая форма сахара; являются обычно бесцветными, растворимыми в воде, прозрачными твердыми веществами. Некоторые моносахариды обладают сладким вкусом. Моносахариды — стандартные блоки, из которых синтезируются дисахариды (такие, как сахароза) и полисахариды (такие, как целлюлоза и крахмал), содержат гидроксильные группы и альдегидную (альдозы) или кетогруппу (кетозы). Каждый углеродный атом, с которым соединена гидроксильную группу (за исключением первого и последнего) является хиральным, давая начало многим изомерным формам. Например, галактоза и глюкоза — альдогексозы, но имеют различные химические и физические свойства. Моносахариды, как и все углеводы, содержат только 3 элемента (C,O,H).
Моносахариды подразделяют на триозы, тетрозы, пентозы, гексозы и т. д. (3, 4, 5, 6 и т. д. атомов углерода в цепи); природные моносахариды с углеродной цепью, содержащей более 9 атомов углерода, не обнаружены. Моносахариды, содержащие 5-членный цикл, называются фуранозами, 6-членный — пиранозами.
Изомерия. Для моносахаридов, содержащих n асимметричных атомов углерода, возможно существование 2n стереоизомеров (см. Изомерия).
38. Химические свойства. Моносахариды вступают в химические реакции, свойственные карбонильной и гидроксильной группам. Характерная особенность моносахаридов — способность существовать в открытой (ациклической) и циклической формах и давать производные каждой из форм. Большинство моноз циклизуются в водном растворе с образованием гемиацеталей или гемикеталей (в зависимости от того, являются ли они альдозами или кетозами) между спиртом и карбонильной группой того же самого сахара. Глюкоза, например, легко образует полуацетали, соединяя свои своим С1 и О5, чтобы сформировать 6-членное кольцо, названное пиранозид. Та же самая реакция может иметь место между С1 и О4, чтобы сформировать 5-членное фуранозид.
Моносахариды в природе. Моносахариды входят в состав сложных углеводов (гликозиды, олигосахариды, полисахариды) и смешанных углеводсодержащих биополимеров (гликопротеиды, гликолипиды и др.). При этом моносахариды связаны друг с другом и с неуглеводной частью молекулы гликозидными связями. При гидролизе под действием кислот или ферментов эти связи могут рваться с высвобождением моносахаридов. В природе свободные моносахариды, за исключением D-глюкозы и D-фруктозы, встречаются редко. Биосинтез моносахаридов из углекислого газа и воды происходит в растениях (см. Фотосинтез); с участием активированных производных моносахаридов — нуклеозиддифосфатсахаров — происходит, как правило, биосинтез сложных углеводов. Распад моносахаридов в организме (например, спиртовое брожение, гликолиз) сопровождается выделением энергии.
Применение.
Некоторые свободные моносахариды и их
производные (например, глюкоза, фруктоза
и её дифосфат и др.) используются в пищевой
промышленности и медицине.
37. Глюкоза (C6H12O6) («виноградный сахар», декстроза) встречается в соке многих фруктов и ягод, в том числе и винограда, отчего и произошло название этого вида сахара. Является шестиатомным сахаром (гексозой).
Физические свойства. Белое кристаллическое вещество сладкого вкуса, хорошо растворимое в воде, не растворима в эфире, плохо растворима в спирте.
Строение молекулы
CH2(OH)-CH(OH)-CH(OH)-CH(OH)-
Глюкоза может существовать в виде циклов (α и β глюкозы).
α и β глюкозы
Переход глюкозы из проекции Фишера в Haworth projection.Глюкоза — конечный продукт гидролиза большинства дисахаридов и полисахаридов.
Биологическая роль. Глюкоза — основной продукт фотосинтеза, образуется в цикле Кальвина.
В организме человека и животных глюкоза является основным и наиболее универсальным источником энергии для обеспечения метаболических процессов. Способностью усваивать глюкозу обладают все клетки организма животных. В то же время, способностью использовать другие источники энергии — например, свободные жирные кислоты и глицерин, фруктозу или молочную кислоту — обладают не все клетки организма, а лишь некоторые их типы.
Транспорт глюкозы из внешней среды внутрь животной клетки осуществляется путём активного трансмембранного переноса с помощью особой белковой молекулы — переносчика (транспортёра) гексоз.
Глюкоза в клетках может подвергаться гликолизу с целью получения энергии в виде АТФ. Первым ферментом в цепи гликолиза является гексокиназа. Активность гексокиназы клеток находится под регулирующим влиянием гормонов — так, инсулин резко повышает гексокиназную активность и, следовательно, утилизацию глюкозы клетками, а глюкокортикоиды понижают гексокиназную активность.
Многие отличные от глюкозы источники энергии могут быть непосредственно конвертированы в печени в глюкозу — например, молочная кислота, многие свободные жирные кислоты и глицерин, или свободные аминокислоты, прежде всего, наиболее простые из них, такие, как аланин. Процесс образования глюкозы в печени из других соединений называется глюконеогенезом.
Те источники
энергии, для которых не существует
пути непосредственного
В связи с исключительной важностью поддержания стабильного уровня глюкозы в крови, у человека и многих других животных существует сложная система гормональной регуляции параметров углеводного обмена. При окислении 1 грамма глюкозы до углекислого газа и воды выделяется 17,6 кДж энергии. Запасённая максимальная «потенциальная энергия» в молекуле глюкозы в виде степени окисления −4 атома углерода (С−4) может понизиться при метаболических процессах до С+4 (в молекуле CO2). Её восстановление на прежний уровень могут осуществлять автотрофы.
Фруктоза, или плодовый сахар C6H12O6 — моносахарид, который в свободном виде присутствует почти во всех сладких ягодах и плодах. Многие предпочитают заменять сахар не синтетическими препаратами, а природной фруктозой.
В отличие от глюкозы, служащей универсальным источником энергии, фруктоза не поглощается инсулин-зависимыми тканями . Она почти полностью поглощается и метаболизируется клетками печени. Практически никакие другие клетки человеческого организма (кроме сперматозоидов) не могут использовать фруктозу. В клетках печени фруктоза фосфорилируется, а затем расщепляется на триозы, которые либо используются для синтеза жирных кислот, что может приводить к ожирению, а также к повышению уровня триглицеридов (что, в свою очередь, повышает риск атеросклероза), или используется для синтеза гликогена (частично также превращается в глюкозу в ходе глюконеогенеза). Однако превращение фруктозы в глюкозу — сложный многоступенчатый процесс, и способность печени перерабатывать фруктозу ограничена. Вопрос, стоит ли включать фруктозу в рацион диабетиков, так как для ее усвоения не требуется инсулин, интенсивно исследуется в последние годы.
Хотя у здорового человека фруктоза не повышает (или повышает незначительно) уровень глюкозы в крови, у больных диабетом фруктоза часто приводит к росту уровня глюкозы. С другой стороны, из-за нехватки глюкозы в клетках, в организмах диабетиков может сжигаться жир, приводя к истощению жировых запасов. В этом случае фруктоза, которая легко превращается в жир и не требует инсулина, может использоваться для их восстановления. Преимущество фруктозы заключается в том, что сладкий вкус можно придать блюду относительно небольшими количествами фруктозы, так как при равной с сахаром калорийности (380 ккал/100 г) она в 1,2-1,8 раза слаще. Однако, как показывают исследования, потребители фруктозы не уменьшают калорийности еды, вместо этого они едят более сладкие блюда.
39. Олигосахариды — это олигомеры, состоящие из нескольких (не более 20) мономеров — моносахаридов, в отличие от полисахаридов, состоящих из десятков, сотен или тысяч моносахаридов; - соединения, построенные из нескольких остатков моносахаридов (от 2 до 10), связанных между собой гликозидной связью.
Весьма важным и широко распространённым частным случаем олигосахаридов являются дисахариды — димеры, состоящие из двух молекул моносахаридов.
Также можно говорить о три-, тетра- и т.д. сахаридах.
40. Дисахариды — общее название подкласса олигосахаридов, у которых молекула состоит из двух мономеров — моносахаридов. Дисахариды образуются в результате реакции конденсации между двумя моносахаридами, обычно гексозами. Реакция конденсации предполагает удаление воды. Связь между моносахаридами,возникающая в результате реакции конденсации,называется гликозидной связью.Обычно эта связь образуется между 1-м и 4-м углеродными атомами соседних моносахаридных единиц (1,4-гликозидная связь).
Процесс конденсации может повторяться бессчетное число раз,в результате чего возникают огромные молекулы полисахаридов. После соединения моносахаридных единиц их называют остатками. Наиболее распространенные дисахариды — это лактоза и сахароза.
Мутаротация (от лат. muto-изменяю и rotatio — вращение), изменение величины оптич. вращения р-ров оптически активных соединений вследствие их эпимеризации. Характерна для моносахаридов, восстанавливающих олигосахаридов, лактонов и др. Мутаротация может катализироваться кислотами и основаниями. В случае глюкозы мутаротация объясняется установлением равновесия: В равновесном состоянии присутствует 38 % aльфа-формы и 62 % бета-формы. Промежут. альдегидная форма содержится в ничтожно малой концентрации. Преимуществ, образование b-формы объясняется тем, что она более термодинамически стабильна.
Реакция "серебряного зеркала" и "медного зеркала" характерны для альдегидов
1) Реакция «серебряного зеркала», образование на стенках пробирки осадка Ag
2) Реакция «медного
зеркала», выпадение красного осадка
Cu2O
40. В свою очередь, дисахариды, возникающие в ряде случаев при гидролизе полисахаридов (мальтоза при гидролизе крахмала, целлобиоза при гидролизе целлюлозы) или существующие в организме в свободном виде (лактоза, сахароза, трегалоза и т. п.), гидролизуются при каталитическом воздействии ос- и р-гликозидаз до индивидуальных моносахаридов. Все гликозидазы, за исключением трегалазы (ot, омрегалоза-глюкогидршгазы), отличаются широким спектром специфичности, ускоряя гидролиз практически любых гликози-дов, являющихся производными того или иного а- или (3-моносахарида. Так, а-глюкозидаза ускоряет реакцию гидролиза а-глюкозидов, в том числе мальтозы; р-глшкозидаза — р-глюкозидов, в том числе целлобиозы; В-галактозидаза — В-галактозидов и среди них лактозы и т.д. Примеры действия а и Р-глюкозидаз были приведены ранее