Автор работы: Пользователь скрыл имя, 29 Мая 2010 в 18:37, Не определен
1.Основные положения теории химического строения А.М. Бутлерова
1. Атомы в молекулах соединены друг с другом в определенной последовательности согласно их валентностям. Последовательность межатомных связей в молекуле называется ее химическим строением и отражается одной структурной формулой (формулой строения).
2. Химическое строение можно устанавливать химическими методами. (В настоящее время используются также современные физические методы).
3. Свойства веществ зависят от их химического строения.
48.
Хитин(C8H13O5N) (фр. chitine, от греч. chiton: хитон
— одежда, кожа, оболочка) — природное
соединение из группы азотсодержащих
полисахаридов. Химическое название: поли-N-ацетил-D-глюкозо-2-
Распространение в природе. Хитин - один из наиболее распространённых в природе полисахаридов – каждый год на Земле в живых организмах образуется и разлагается около 10 гигатонн хитина.
Выполняет защитную и опорную функции, обеспечивая жёсткость клеток — содержится в клеточных стенках грибов.
Главный компонент экзоскелета членистоногих.
Также хитин образуется в организмах многих других животных – разнообразных червей, кишечнополостных и т. д.
Во всех организмах, вырабатывающих и использующих хитин, он находится не в чистом виде, а в комплексе с другми полисахаридами, и очень часто ассоциирован с белками. Несмотря на то, что хитин является веществом, очень близким по строению, физико-химическим свойствам и биологической роли к целлюлозе, в организмах, образующих целлюлозу (растения, некоторые бактерии) хитин найти не удалось.
Химия хитина.В естественном виде хитины разных организмов несколько отличаются друг от друга по составу и свойствам. Молекулярная масса хитина достигает 260 000.
Хитин не растворим в воде, устойчив к разбавленным кислотам, щелочам, спирту и др. органическим растворителям. Растворим в концентрированных растворах некоторых солей (хлорид цинка, тиоцианат лития, соли кальция).
При нагревании с концентрированными растворами минеральных кислот разрушается (гидролизуется), отщепляя ацетильные группы.
Практическое использование. Одно из производных хитина, получаемое из него промышленным способом - хитозан. Сырьем для его получения служат панцири ракообразных (криль, камчатский краб), а также продукты микробиологического синтеза.
49. Ароматические углеводороды, органические соединения, состоящие из углерода и водорода и содержащие бензольные ядра. Простейшие и наиболее важные представители А. у. — бензол (I) и его гомологи: метилбензол, или толуол (II), диметилбензол, или ксилол, и т. д. К А. у. относятся также производные бензола с ненасыщенными боковыми цепями, например стирол (III). Известно много А. у. с несколькими бензольными ядрами в молекуле, например дифенилметан (IV), дифенил C6H5—C6H5, в котором оба бензольных ядра непосредственно связаны между собой; в нафталине (V) оба цикла имеют 2 общих атома углерода; такие углеводороды называются А. у. с конденсированными ядрами.
Бензо́л C6H6, PhH) — органическое химическое соединение, бесцветная жидкость с приятным сладковатым запахом. Ароматический углеводород. Бензол входит в состав бензина, широко применяется в промышленности, является исходным сырьём для производства лекарств, различных пластмасс, синтетической резины, красителей. Хотя бензол входит в состав сырой нефти, в промышленных масштабах он синтезируется из других её компонентов. Токсичен, канцероген.
Гомологи - Соединения, принадлежащие к одному классу, но отличающиеся друг от друга по составу на целое число групп СН2. Совокупность всех гомологов образует гомологический ряд.
Физические свойства. Бесцветная жидкость со своеобразным резким запахом. Температура плавления = 5,5 °C, температура кипения = 80,1 °C, плотность = 0,879 г/см³, молекулярная масса = 78,11 г/моль. Подобно всем углеводородам бензол горит и образует много копоти. С воздухом образует взрывоопасные смеси, хорошо смешивается с эфирами, бензином и другими органическими растворителями, с водой образует азеотропную смесь с температурой кипения 69,25 °C. Растворимость в воде 1,79 г/л (при 25 °C).
Структура. Бензол по составу относится к ненасыщенным углеводородам (гомологический ряд CnH2n-6), но в отличие от углеводородов ряда этилена C2H4 проявляет свойства, присущие насыщенным углеводородам при жёстких условиях, а вот к реакциям замещения бензол более склонен. Такое «поведение» бензола объясняется его особым строением: наличием в структуре сопряжённого 6π-электронного облака. Современное представление об электронной природе связей в бензоле основывается на гипотезе Лайнуса Полинга, который предложил изображать молекулу бензола в виде шестиугольника с вписанной окружностью, подчёркивая тем самым отсутствие фиксированных двойных связей и наличие единого электронного облака, охватывающего все шесть атомов углерода цикла.
50. Ароматические соединения (арены) — циклические органические соединения, которые имеют в своём составе ароматическую систему связей. Они могут иметь насыщенные или ненасыщенные боковые цепи.
К наиболее важным
ароматическим углеводородам
Также ароматичностью обладает боразол («неорганический бензол»), но его свойства заметно отличаются от свойств органических аренов.
Реакции электрофильного замещения' (англ. substitution electrophilic reaction) — реакции замещения, в которых атаку осуществляет электрофил - частица, заряженная положительно или имеющая дефицит электронов. При образовании новой связи уходящая частица - электрофаг отщепляется без своей электронной пары. Самой популярной уходящей группой является протон H+.
51-52. Реакции ароматического электрофильного замещения
Для ароматических систем фактически существует один механизм электрофильного замещения - SEAr. Механизм SE1 (по аналогии с механизмом SN1) - встречается крайне редко, а SE2 (соответствующий по аналогии SN2) - не встречается вовсе.
Механизм реакции SEAr или реакции ароматического электрофильного замещения (англ. substitution electrophilic aromatic) является самым распространенным и наиболее важным среди реакций замещения ароматических соединений и состоит из двух стадий. На первом этапе происходит присоединение электрофила, на втором - отщепление электрофуга.
В ходе реакции образуется промежуточный положительно заряженный интермедиат (на рисунке - 2b). Он носит название интермедиат Уэланда, арониевый ион или σ-комплекс. Этот комплекс, как правило, очень реакционноспособен и легко стабилизируется, быстро отщепляя катион. Лимитирующей стадией в подавляющем большинстве реакций SEAr является первый этап.
Скорость реакции = k*[ArX]*[E+]
В качестве атакующей частицы обычно выступают относительно слабые электрофилы, поэтому в большинстве случаев реакция SEAr протекает под действием катализатора - кислоты Льюиса. Чаще других используются AlCl3, FeCl3, FeBr3, ZnCl2.
В этом случае механизм реакции выглядит следующим образом (на примере хлорирования бензола, катализатор FeCl3)[3]:
1.На первом
этапе катализатор
На втором этапе,
собственно, и реализуется механизм SEAr
53. Гетероциклические соединения (гетероциклы) — органические соединения, содержащие циклы, в состав которых наряду с углеродом входят и атомы других элементов. Могут рассматриваться как карбоциклические соединения с гетерозаместителями (гетероатомами) в цикле. Наиболее разнообразны и хорошо изучены ароматические азотсодержащие гетероциклические соединения. Предельные случаи гетероциклических соединений — соединения, не содержащие атомов углерода в цикле, например, пентазол.
Пиррол — ароматический пятичленный азотистый гетероцикл, обладает слабыми основными свойствами. Содержится в костном масле (которое получают при сухой перегонке костей), а также в каменноугольной смоле. Пиррольные кольца входят в состав порфиринов — хлорофилла растений, гема гемоглобинов и цитохромов и ряда других биологически важных соединений.
Строение и свойства. Пиррол представляет собой бесцветную жидкость, напоминающую по запаху хлороформ, медленно темнеющую при стоянии на воздухе. Он слегка гигроскопичен, немного растворим в воде и хорошо растворим в большинстве органических растворителей. Структуру пиррола предложил в 1870 г. Байер, основываясь на его окислении хромовой кислотой в малеинимид и образовании его при перегонке сукцинимида с цинковой пылью.
Кислотность и металлирование. Пиррол является слабой NH-кислотой (pKa 17,5 в воде) и реагирует с щелочными металлами и их амидами в жидком аммиаке или инертных растворителях с депротонированием по положению 1 и образованием соответствующих солей. Аналогично проходит и реакция с реактивами Гриньяра, при которой образуются N-магниевые соли. N-замещённый пирролы реагируют с бутил- и фениллитием, металлируясь в α-положение.
54. ИНДOЛ (бензо[b]пиррол), мол. м. 117,18; бесцв. кристаллы со слабым запахом нафталина; т. пл. 52,5 °С, т. кип. 254 °С; d456 1,0718; возгоняется при нагр. до 150°С; m 7,03.10-30 Кл.м (бензол, 25 °С); перегоняется с парами воды, диэтилового эфира и NH3; хорошо раств. в орг. р-рителях, горячей воде, жидком NH3. Молекула имеет плоскую конфигурацию.
Индол - слабое основание (рКа —2,4). При протонировании образует катион 3H-индолия (ф-ла I), к-рый при взаимод. с нейтральной молекулой индол дает димер (II). Как слабая к-та (рKа 17), индол с Na в жидком NH3 образует N-натрийиндол, с КОН при 130°С - N-калийиндол. Обладает ароматич. св-вами. Электроф. замещение идет гл. обр. в положение 3. Нитрование обычно осуществляется бензоилнитратом, сульфирование - пиридинсульфотриоксидом, бромирование - диоксандибромидом, хлорирование - SO2Cl2, алкилирование - активными алкилгалогенидами. Ацетилирование в уксусной к-те также идет в положение 3, в присут. CH3COONa - в положение 1; в уксусном ангидриде образуется 1,3-диацетилиндол. Индол легко присоединяется по двойной связи a,b-непредельных кетонов и нитрилов.
Аминометилирование (р-ция Манниха) в мягких условиях протекает в положение 1, в жестких - в положение 3. Замещение в бензольное кольцо (преим. в положения 4 и 6) идет лишь в кислых средах при блокированном положении 3. В присут. Н2О2, надкислот или на свету индол окисляется в индоксил, к-рый затем превращ. в тример или индиго. Более жесткое окисление под действием О3, МnО2 приводит к разрыву пиррольного кольца с образованием 2-формамидобензальдегида. При гидрировании индола водородом в мягких условиях восстанавливается пиррольное кольцо, в более жестких - и бензольное.
Индол содержится в эфирных маслах жасмина и цитрусовых, входит в состав кам.-уг. смолы. Кольцо индола - фрагмент молекул важных прир. соединений (напр., триптофана, серотонина, мелатонина, буфотенина). Обычно индол выделяют из нафталиновой фракции кам.-уг. смолы или получают дегидрированием о-этиланилина с послед. циклизацией образующегося продукта. Индол и его производные синтезируют также циклизацией арилгидразонов карбонильных соед. (р-ция Фишера), взаимод. ариламинов с a-галоген- или a-гидроксикарбонильными соед. (р-ция Бишлера) и др. Ядро индола входит в состав индольных алкалоидов. Сам индол-фиксатор запаха в парфюмерии; его производные используют в произ-ве биологически активных соед. (гормонов, галюциногенов) и лек. ср-в (напр., индопана, индометацина).
55. Имидазол — органическое соединение класса гетероциклов, пятичленный цикл с двумя атомами азота и тремя атомами углерода в цикле, изомерен пиразолу.
Свойства. В незамещенном имидазоле положения 4 и 5 (атомы углерода) равноценны, вследствие таутомерии. Ароматичен, реагирует с солями диазония (сочетание). Нитруется и сульфируется только в кислой среде в положение 4, галогены в щелочной среде вступают по положению 2, в кислой - по положению 4. Легко алкилируется и ацилируется по иминному N, раскрывает цикл при взаимодействии с растворами сильных кислот и пероксидов. Катализирует гидролиз трудноомыляемых сложных эфиров и амидов карбоновых кислот.
На основе имидазола производят большое количество различных ионных жидкостей.
Методы получения.Из орто-фенилендиамина через бензимидазол и 4,5-имидазолдикарбоновую кислоту.
Взаимодействием глиоксаля (щавелевый альдегид) с аммиаком и формальдегидом.
Биологическая роль. Имидазольный цикл входит в состав незаменимой аминокислоты гистидина. Структурный фрагмент гистамина, пуриновых оснований, дибазола.
56. Пиридин — шестичленный ароматический гетероцикл с одним атомом азота, бесцветная жидкость с резким неприятным запахом; смешивается с водой и органическими растворителями. Пиридин — слабое основание, дает соли с сильными минеральными кислотами, легко образует двойные соли и комплексные соединения.
Получение. Основным источником для получения пиридина является каменноугольная смола.
Химические свойства.Пиридин проявляет свойства, характерные для третичных аминов: образует N-оксиды, соли N-алкилпиридиния, способен выступать в качестве сигма-донорного лиганда.