Автор работы: Пользователь скрыл имя, 29 Мая 2010 в 18:37, Не определен
1.Основные положения теории химического строения А.М. Бутлерова
1. Атомы в молекулах соединены друг с другом в определенной последовательности согласно их валентностям. Последовательность межатомных связей в молекуле называется ее химическим строением и отражается одной структурной формулой (формулой строения).
2. Химическое строение можно устанавливать химическими методами. (В настоящее время используются также современные физические методы).
3. Свойства веществ зависят от их химического строения.
41. В соответствии со сбоим химическим строением дисахариды типа трега-лозы (гликозидо-гликозиды) и типа мальтозы (гликозидо-глюкозы) обладают существенно различными химическими свойствами: первые не дают никаких реакций, свойственных альдегидной или кетонной группе, т. е. не окисляются, не восстанавливаются, не образуют озазонов, не вступают в реакцию поликоиденсации (не осмоляются), не мутаротируют и т. п. Для дисахаридов типа мальтозы все упомянутые реакции, наоборот, весьма характерны. Причина этого различия вполне понятна из сказанного выше о двух типах структуры дисахаридов и свойствах входящих в их состав остатков моносахаридов. Она заключается в том, что только в дисахаридах типа мальтозы возможна кольчатоцеппая таутомерия, в результате чего образуется свободная альдегидная или кетонная группа, проявляющая свои характерные свойства.
По спиртовым гидроксилам оба типа дисахаридов дают одинаковые реакции: образуют простые и сложные эфирьг, взаимодействуют с гидратами оксидов металлов.
В природе существует большое число дисахаридов; существенттое зпачепие среди них имеют упомянутые выше трегалоза и мальтоза, а также сахароза, целлобиоза и лактоза.
42. Мальтоза (от англ. malt — солод) — солодовый сахар, природный дисахарид, состоящий из двух остатков глюкозы; содержится в больших количествах в проросших зёрнах (солоде) ячменя, ржи и других зерновых; обнаружен также в томатах, в пыльце и нектаре ряда растений. М. легко растворима в воде, имеет сладкий вкус; является восстанавливающим сахаром, так как имеет незамещённую полуацетальную гидроксильную группу. Биосинтез М. из b-D-глюкопиранозилфосфата и D-глюкозы известен только у некоторых видов бактерий. В животном и растительном организмах М. образуется при ферментативном расщеплении крахмала и гликогена (см. Амилазы). Расщепление М. до двух остатков глюкозы происходит в результате действия фермента a-глюкозидазы, или мальтазы, которая содержится в пищеварительных соках животных и человека, в проросшем зерне, в плесневых грибах и дрожжах. Генетически обусловленное отсутствие этого фермента в слизистой оболочке кишечника человека приводит к врождённой непереносимости М. — тяжёлому заболеванию, требующему исключения из рациона М., крахмала и гликогена или добавления к пище фермента мальтазы.
При кипячении мальтозы с разбавленной кислотой и при действии фермента мальтаза гидролизуется (образуются две молекулы глюкозы C6H12O6). Мальтоза легко усваивается организмом человека. Молекулярная масса- 342,32 Т плавления- 108 (безводная)
43. Лактоза (от лат. lactis — молоко) С12Н22О11 — углевод группы дисахаридов, содержится в молоке и молочных продуктах. Молекула лактозы состоит из остатков молекул глюкозы и галактозы. Лактозу иногда называют молочным сахаром.
Химические свойства. При кипячении с разбавленной кислотой происходит гидролиз лактозы.
Получают лактозу из сыворотки молока.
Применение. Применяют для приготовления питательных сред, например при производстве пенициллина. Используют в качестве вспомогательного вещества (наполнителя) в фармацевтической промышленности.
Из лактозы получают лактулозу - ценный препарат для лечения кишечных расстройств, например, запора.
44. Сахароза C12H22O11, или свекловичный сахар, тростниковый сахар, в быту просто сахар — дисахарид, состоящий из двух моносахаридов — α-глюкозы и β-фруктозы.
Сахароза является весьма распространённым в природе дисахаридом, она встречается во многих фруктах, плодах и ягодах. Особенно велико содержание сахарозы в сахарной свёкле и сахарном тростнике, которые и используются для промышленного производства пищевого сахара.
Сахароза имеет высокую растворимость. В химическом отношении фруктоза довольно инертна,т.е. при перемещении из одного места в другое почти не вовлекается в метаболизм. Иногда сахароза откладывается в качестве запасного питательного вещества.
Сахароза, попадая
в кишечник, быстро гидролизуется
альфа-глюкозидазой тонкой кишки на
глюкозу и фруктозу, которые затем
всасываются в кровь. Ингибиторы
альфа-глюкозидазы, такие, как акарбоза,
тормозят расщепление и всасывание
сахарозы, а также и других углеводов,
гидролизуемых альфа-глюкозидазой, в частности,
крахмала. Это используется в лечении
сахарного диабета 2-го типа. Синонимы:
альфа-D-глюкопиранозил-бета-D-
Химические и физические свойства. Молекулярная масса 342,3 а.е.м. Брутто-формула (система Хилла): C12H22O11. Вкус сладковатый. Растворимость (грамм на 100 грамм): в воде 179 (0°C) и 487 (100°C), в этаноле 0,9 (20°C). Малорастворима в метаноле. Не растворима в диэтиловом эфире. Плотность 1,5879 г/см3 (15°C). Удельное вращение для D-линии натрия: 66,53 (вода; 35 г/100г; 20°C). При охлаждении жидким воздухом, после освещения ярким светом кристаллы сахарозы фосфоресцируют. Не проявляет восстанавливающих свойств - не реагирует с реактивом Толленса и реактивом Фелинга. Наличие гидроксильных групп в молекуле сахарозы легко подтверждается реакцией с гидроксидами металлов. Если раствор сахарозы прилить к гидроксиду меди (II), образуется ярко-синий раствор сахарата меди. Альдегидной группы в сахарозе нет: при нагревании с аммиачным раствором оксида серебра (I) она не дает «серебряного зеркала», при нагревании с гидроксидом меди (II) не образует красного оксида меди (I). Из числа изомеров сахарозы, имеющих молекулярную формулу С12Н22О11, можно выделить мальтозу и лактозу.
Реакция сахарозы с водой. Если прокипятить раствор сахарозы с несколькими каплями соляной или серной кислоты и нейтрализовать кислоту щелочью, а после этого нагреть раствор, то появляются молекулы с альдегидными группами, которые и восстанавливают гидроксид меди (II) до оксида меди (I). Эта реакция показывает, что сахароза при каталитическом действии кислоты подвергается гидролизу, в результате чего образуются глюкоза и фруктоза: С12Н22О11 + Н2О → С6Н12O6 + С6Н12O6
Природные и антропогенные источники. Содержится в сахарном тростнике, сахарной свекле (до 28% сухого вещества), соках растений и плодах (например, берёзы, клёна, дыни и моркови). Источник получения сахарозы - из свеклы или из тростника определяют по соотношению содержания стабильных изотопов углерода 12C и 13C. Сахарная свекла имеет C3-механизм усвоения углекислого газа (через фосфоглицериновую кислоту) и предпочтительно поглощает изотоп 12C; сахарный тростник имеет C4-механизм поглощения углекислого газа (через щавелевоуксусную кислоту) и предпочтительно поглощает изотоп 13C.
45. Целлобиоза — углевод из группы дисахаридов, состоящий из двух глюкозных остатков, соединённых (β-глюкозидной связью; основная структурная единица целлюлозы.
Белое кристаллическое вещество, хорошо растворимое в воде. Для целлобиозы характерны реакции с участием альдегидной (полуацетальной) группы и гидроксильных групп. При кислотном гидролизе или под действием фермента β-глюкозидазы целлобиоза расщепляется с образованием 2 молекул глюкозы.
Получают целлобиозу
при частичном гидролизе целлюлозы. В
свободном виде целлобиоза содержится
в соке некоторых деревьев.
46. Полисахари́ды — общее название класса сложных высокомолекулярных углеводов, молекулы которых состоят из десятков, сотен или тысяч мономеров — моносахаридов.
Полисахариды необходимы для жизнедеятельности животных и растительных организмов. Они являются одним из основных источников энергии, образующейся в результате обмена веществ организма. Они принимают участие в иммунных процессах, обеспечивают сцепление клеток в тканях, являются основной массой органического вещества в биосфере.
Была установлена
многообразная биологическая
К полисахаридам относятся, в частности:
декстрин — полисахарид, продукт гидролиза крахмала;
крахмал — основной полисахарид, откладываемый, как энергетический запас у растительных организмов;
гликоген — полисахарид, откладываемый, как энергетический запас в клетках животных организмов, но встречается в малых количествах и в тканях растений;
целлюлоза — основной структурный полисахарид клеточных стенок растений;
галактоманнаны — запасные полисахариды некоторых растений семейства бобовых, такие как гуаран и камедь рожкового дерева;
глюкоманнан — полисахарид, получаемый из клубней конняку, состоит из чередующихся звеньев глюкозы и маннозы, растворимое пищевое волокно, уменьшающее аппетит;
амилоид — применяется при производстве пергаментной бумаги.
Целлюло́за (от лат. cellula — клетка, то же самое, что клетчатка) — [С6Н7О2(OH)3]n, полисахарид; главная составная часть клеточных оболочек всех высших растений.
Целлюлоза состоит из остатков молекул глюкозы, которая и образуется при кислотном гидролизе целлюлозы:
(C6H10O5)n + nH2O -> nC6H12O6
Целлюлоза представляет собой длинные нити, содержащие 300–2500 глюкозных остатков, без боковых ответвлений. Эти нити соединены между собой множеством водородных связей, что придает целлюлозе большую механическую прочность. У млекопитающих (как и большинства других животных) нет ферментов, способных расщеплять целлюлозу. Однако многие травоядные животные (например, жвачные) имеют в пищеварительном тракте бактерий-симбионтов, которые расщепляют и помогают хозяевам усваивать этот полисахарид.
Промышленным методом целлюлозу получают методом варки на целлюлозных заводах входящих в промышленные комплексы (комбинаты). По типу применяемых реагентов различают следующие способы варки целлюлозы:
Кислые:
Сульфитный. Варочный раствор содержит сернистую кислоту и ее соль, например гидросульфит натрия. Этот метод применяется для получения целлюлозы из малосмолистых пород древесины: ели, пихты.
Щелочные:
Натронный. Используется раствор гидроксида натрия. Натронным способом можно получать целлюлозу из лиственных пород древесины и однолетних растений.
Сульфатный. Наиболее распространенный метод на сегодняшний день. В качестве реагента используют раствор, содержащий гидроксид и сульфид натрия, и называемый белым щелоком. Свое название метод получил от сульфата натрия, из которого на целлюлозных комбинатах получают сульфид для белого щелока. Метод пригоден для получения целлюлозы из любого вида растительного сырья. Недостатком его является выделения большого количества дурно пахнущих сернистых соединений: метилмеркаптана, диметилсульфида и др. в результате побочных реакций.
Получаемая после варки техническая целлюлоза содержит различные примеси: лигнин, гемицеллюлозы. Если целлюлоза предназначена для химической переработки (например, для получения искусственных волокон), то она подвергается облагораживанию - обработке холодным или горячим раствором щелочи для удаления гемицеллюлоз.
Для удаления остаточного лигнина и придания целлюлозе белизны проводится ее отбелка. Традиционная хлорная отбелка включает в себя две ступени:
обработка хлором — для разрушения макромолекул лигнина;
обработка щелочью — для экстракции образовавшихся продуктов разрушения лигнина.
47. Крахма́л — полисахариды амилозы и амилопектина, мономером которых является альфа-глюкоза. Крахмал, синтезируемый разными растениями под действием света (фотосинтез) имеет несколько различных составов и структуру зёрен.
Биологические свойства. Крахмал, являясь одним из продуктов фотосинтеза, широко распространен в природе. Для растений он является запасом питательных веществ и содержится в основном в плодах, семенах и клубнях. Наиболее богато крахмалом зерно злаковых растений: риса (до 86 %), пшеницы (до 75 %), кукурузы (до 72 %), а также клубни картофеля (до 24 %).
Для организма человека крахмал наряду с сахарозой служит основным поставщиком углеводов — одного из важнейших компонентов пищи. Под действием ферментов крахмал гидролизуется до глюкозы, которая окисляется в клетках до углекислого газа и воды с выделением энергии, необходимой для функционирования живого организма.
Биосинтез. Часть глюкозы, образующейся в зелёных растениях при фотосинтезе, превращается в крахмал:
6CO2 + 6H2O → C6H12O6 + 6O2
nC6H12O6(глюкоза) → (C6H10O5)n + nH2O
В общем виде это можно записать как 6nCO2 + 5nH2O → (C6H10O5)n 6nO2.
Крахмал в качестве резервного питания накапливается в клубнях, плодах, семенах растений. Так в клубнях картофеля содержится до 24 % крахмала, в зёрнах пшеницы — до 64 %, риса — 75 %, кукурузы — 70 %.
Гликоген
— полисахарид, образованный остатками
глюкозы; основной запасной углевод человека
и животных. Гликоген (также иногда называемый
животным крахмалом, несмотря на неточность
этого термина) является основной формой
хранения глюкозы в животных клетках.
Откладывается в виде гранул в цитоплазме
во многих типах клеток (главным образом
печени и мышц). Гликоген образует энергетический
резерв, который может быть быстро мобилизован
при необходимости восполнить внезапный
недостаток глюкозы. Гликогеновый запас,
однако, не столь емок в калориях на грамм,
как запас триглицеридов (жиров). Только
гликоген, запасенный в клетках печени
(гепатоциты) может быть переработан в
глюкозу для питания всего организма,
при этом гепатоциты способны накапливать
до 8 процентов своего веса в виде гликогена,
что является максимальной концентрацией
среди всех видов клеток. Общая масса гликогена
в печени может достигать 100—120 граммов
у взрослых. В мышцах гликоген перерабатывается
в глюкозу исключительно для локального
потребления и накапливается в гораздо
меньших концентрациях (не более 1 % от
общей массы мышц), в то же время его общий
мышечный запас может превышать запас,
накопленный в гепатоцитах. Небольшое
количество гликогена обнаружено в почках,
и еще меньшее — в определенных видах
клеток мозга (глиальных) и белых кровяных
клетках.