Курс лекций по "Философии"

Автор работы: Пользователь скрыл имя, 14 Марта 2011 в 11:43, лекция

Описание работы

Тема 1. Наука как общественное явление. Предмет философии науки.
Тема III. Возникновение науки и основные стадии ее исторической эволюции.
Тема IV. Структура научного знания
Тема X. Философские проблемы социально-гуманитарных наук.

Файлы: 4 файла

Лекции Часть 1 (декабрь).doc

— 147.00 Кб (Просмотреть файл, Скачать файл)

Лекции Часть 2 (январь).doc

— 179.00 Кб (Скачать файл)

2) Возникновение  дифференцированной науки, связанной с промышленными революциями (конец 18 – 19 вв.). Ключевым здесь является понятие классической науки, включающее 3 особенности:

1) Основной  областью знаний в классической  науке стала физика и на  ней, как стали считать, базируются  все другие науки, причем не только естественные, но и гуманитарные – при этом имелась в виду физика Ньютона – рассматривала мир как механизм, совокупность материальных тел, движущихся по строгим естественным законам, причем такое понимание мира распространялось и на биологические объекты, а также и социологические процессы, в том числе и на человека.

2) Весь  мир сводился к механическим  силам притяжения и отталкивания. Все явления, в том числе,  и социальные можно представить  как перемещение частиц вещества, лишенных каких-либо качественных особенностей. Первостепенное значение в научных методах приобрели расчеты, особое внимание уделялось точным измерениям. Один из мыслителей – О. Конт призывал социальную науку называть социальной физикой.

3) В отличие  от научной мысли Средневековья, наука развивалась на своей собственной основе, т.е. она развивалась вне влияния ненаучных, религиозных установок и опиралась только на собственные выводы.

4) Под  влиянием содержания классической  науки стала перестраиваться  и сложившаяся в Средневековье система образования. Наряду с средневековыми университетами стали появляться политехнические специальные учебные заведения, причем учебные программы стали выстраиваться по другой системе, в основе которой первое место занимала механика, затем физика, химия, биология, социология. Вместе с тем, в рамках этого большого периода выделяется 2 этапа: наука периода Просвещения (17 – 18 вв.), наука эпохи промышленной революции (конец 18 – начало 19 вв.).

2. Наука эпохи Просвещения  (17 – конец 18 вв.).

Этот  этап характеризуется огромным влиянием на весь корпус науки идей И. Ньютона (1643 – 1727 гг.). Классический труд Ньютона «Математические начала натуральной философии» (1677 г.). В нем Ньютон доказал, что сила тяжести, которая наблюдается в земных условиях является той же силой, которая удерживает Землю на орбите и все другие планеты. Эта сила пропорциональна массе взаимодействия тел и обратно пропорциональна квадрату расстояния между ними: F = m / s ².

Многие  ученые до Ньютона подходили к  мысли о всеобщем начале (Галилей), однако заслуга Ньютона в том, что он четко сформулировал фундаментальную роль сил тяготения в картине мира. Закон Всемирного тяготения был незыблемым до конца 19 в. Он был поколеблен открытиями А. Эйнштейна (1879 – 1955 гг.) и Н. Бора. А. Эйнштейн доказал, что при больших скоростях движения тел, достигающих скорости света, и огромных расстояниях, свойственных мегамиру, время и пространство, а также масса тел не подчиняются законам классической механики Ньютона, обнаруживая ранее неизвестные свойства относительности. Н. Бор (1885 – 1962), исследуя явления микромира, доказал, что элементарные частицы также не подчиняются законам Ньютона, а их поведение может быть предсказано только на основе теории вероятностей. Он говорил: «Раньше было принято считать, что физика описывает Вселенную. Теперь мы знаем, что физика описывает лишь то, что мы можем сказать о Вселенной».

В современной  науке все же существует мнение, что современная квантовая физика является не завершенной и некоторые  ее положения могут быть пересмотрены.

Вторая  особенность эпохи Просвещения  заключалась в прочном утверждении  в сознании ведущих ученых рационалистического  мировоззрения в противовес религиозному (основанному на догмах). Поэтому  этот период стали называть веком  разума. Считали, что Вселенная развивается по собственным присущим ей законам. Наиболее глубокое обоснование идея самодостаточности Вселенной нашла отражение в труде Лапласа «Небесная механика». Заменителем Библии стала знаменитая «Энциклопедия наук, искусств и ремесел» - основатели Дидро, Вольтер, Руссо.

Третья  особенность состоит в том, что  самым престижным занятием стала  считаться в это время наука. Основанием стал лозунг Ф. Бэкона «Знание  – сила». Утвердилось мнение, что  человеческое познание имеет огромные возможности, а также в огромных возможностях социального прогресса – умонастроение, получившее наименование познавательного и социального оптимизма. На этой почве возникли многочисленные социальные утопии. Вслед за «Утопией» англичанина Томаса Мора (1516) появились книги итальянца Томмазо Кампанеллы «Город Солнца» (1602) и утопическая повесть английского философа Ф. Бэкона «Новая Атлантида» (1627), в которой впервые излагался проект государственной организации науки. Задачей научно-технического центра, именуемого «Домом Соломона», по мысли Ф. Бэкона должно стать не только планирование и организация научных исследований, но и введение их в хозяйство и быт. Несколько позднее, в XIX в. социальная утопия развита англичанином Р. Оуэном, французами Ш. Фурье, Р. Сен-Симоном, ставшими непосредственными предшественниками марксизма.

Начался активный процесс институционализации  науки, появились институты, которых  раньше не было. Именно в это время  сложилась классическая система  организации науки, просуществовавшая  до настоящего времени. Стали появляться особые учреждения, которые стали объединять профессиональных ученых – академии наук. В 1603 г. появилась первая – Римская – академия наук. Одним из первых академиков стал Галилей, академия вскоре стала защищать его от нападок церкви.

В 1622 г. была создана английская Королевская  академия наук. В 1703 г. ее руководителем  стал И. Ньютон. В 1714 г. в качестве иностранного члена этой академии наук был избран русский князь, приближенный Петра  I, Александр Меньшиков. При избрании отмечалось, что он создал в Россию первую обсерваторию, а также одну из крупнейших библиотек в Петербурге. Уведомил его об избрании сам И. Ньютон.

В 1666 г. создана французская академия наук – ее членов избирали только с согласия короля. Король (Людовик XIV) лично интересовался деятельностью академии. Именно во Франции государство стало впервые платить деньги за членство в академии. В качестве иностранного члена в 1714 г. был избран Петр I.

В 1725 г. при активной поддержке Петра  I была создана Российская Академия наук. Первыми членами академии стали иностранцы: математик Л. Эйлер, математик и биолог Д. Бернулли, а позднее М.В. Ломоносов. В качестве иностранных членов в академию были избраны И. Кант, Д. Дидро, Ф. Вольтер, И. Гете.

В это  же время стал повышаться уровень научных исследований в университетах. Появляются специальные высшие учебные заведения: Горное училище в Париже (1747), Горное училище в Петербурге (1773) и др. Появились кафедры как центры организации внутривузовских исследований. Возникло понятие «научная и учебная дисциплина».

Свидетельством  повышения общего уровня организации  науки стало формирование особых направлений исследований – специализированных научно-исследовательских программ. По мнению одного из современных исследователей истории науки И. Лакатоса (1922 – 1974), в этот период сформировались следующие шесть основных направлений научных исследований: исследование различных видов энергии; металлургическое производство; направление, связанное с электричеством; химическое направление; биологическое направление; астрономическое направление.

Наиболее  яркими представителями науки этой эпохи были: Ф. Бэкон, И. Ньютон –  в Англии, Лейбниц (участвовал в создании Российской Академии наук), И. Кант, И. Гете – в Германии, М.И. Ломоносов, Н.Новиков, А. Радищев – в России; Р. Декарт, Паскаль – во Франции.

3. Промышленная революция (конец 18 – 19 вв.).

3.1. Технические  достижения 18 в.

Промышленная  революция – широкое понятие, под которым понимается развитие энергетики и машинного производства. Крупнейшие изобретения не всегда были связаны с чисто научными теоретическими открытиями. Эти изобретения непосредственно возникали в результате потребностей практики (общества, промышленности). Например, многие технические нововведения в Англии были вызваны огромным спросом на товары. Отсюда и крупнейшие изобретения, например, в текстильной промышленности.

В 1765 г. английский ткач Джеймс Харгривс построил изобретенную им прядильную машину, названную  в честь дочери «Дженни». Это изобретение  создало толчок к последующей механизации ручного труда, что остро поставило вопрос об энергоресурсах. Это привело к одному из крупнейших технических достижений Промышленной революции – созданию парового двигателя. Испробовав множество вариантов, изобретатели наконец смогли в начале XVIII в. создать экономически выгодную паровую машину. Заслуга в этом принадлежит английскому изобретателю Т. Ньюкомену.

Усовершенствовав  машинную Ньюкомена, другой английский изобретатель Джеймс Уатт сумел в 1784 г. изготовить универсальный паровой  двигатель, который можно было использовать в различных отраслях крупной промышленности. Изобретение Уатта привело к радикальным изменениям в технологиях XVIII – XIX вв.: сначала в промышленности, а затем и на транспорте. Этому способствовали как универсализм паровых двигателей, так и их высокая мощность.

3.2. Основные  научные и технические достижения  XIX в.

Крупнейшие  достижения в области науки были достигнуты прежде всего в области физики: в электродинамике (Майкл Фарадей и А. Ампер создали первый электрический генератор и электродвигатель).  Большую роль в физике стала играть термодинамика – исследование общих законов механизма превращения различных видов энергии. Химическая наука: Д.И. Менделеевым (1869) открыт периодический закон и создана периодическая система элементов. Данный закон был сформулирован Д.И. Менделеевым следующим образом: «Свойства простых тел, а также форма и свойства соединений элементов находятся в периодической зависимости от величины атомных весов элементов». В настоящее время формулировка периодического закона несколько изменилась в связи с изменением представлений о строении атомов: «Строение и свойства элементов и их соединений находятся в периодической зависимости от заряда ядра атомов и определяются периодически повторяющимися однотипными электронными конфигурациями их атомов».

Биология: достижения связаны с именем Ч. Дарвина («О происхождении видов» - 1859). Именно его наблюдения заставили его  отвергнуть традиционные божественные концепции творения мира. Дарвинская теория оказалась настолько хорошо обоснованной, что большинство биологов вскоре признали ее. Сегодня с некоторыми поправками, внесенными в нее в связи с позднейшими открытиями в области генетики, ее принимает и большинство современных биологов. В последнее время усилилась критика этой теории, прежде всего со стороны последователей креационизма. Ч. Дарвин не был атеистом, считая, что его теория не опровергает идеи креационизма, и не исключал возможности вмешательства посторонних сил (истоки могли быть созданы высшей силой). Дарвин в целом дал более обоснованную фактами концепцию возникновения жизни.

Крупнейшие  технические достижения: расширение применения парового двигателя не только в промышленности, но и на транспорте (сначала на железной дороге, а затем  и на водном транспорте). Достигнуты успехи в электротехнике – возможность производства электроэнергии и передачи ее на большие расстояния, что обусловило более широкое ее применение.

Исследование  металлургических процессов: развитие химических технологий (химических удобрений, химических красителей).

В XIX в. произошли существенные организационные изменения в науке: центры стали перемещаться из академий наук в университеты. Кроме того, появились специализированные научно-исследовательские учреждения. Так, по инициативе Дж. Максвелла в 1874 г. при Кембриджском университете был создан «Университетский центр физических исследований».

В XIX в. усилились коммуникации между учеными не только на национальном, но и на международном уровне. Стали появляться научно-технические выставки, конференции.

Произошли изменения в системе образования. В составе преподавателей университетов  стали появляться крупные ученые. Профессия преподавателя стала  одной из самых престижных. Кроме  старых университетов значительную роль стали играть отраслевые специализированные вузы, в которых кроме традиционных дисциплин главное внимание стало уделяться изучению естественных и технических дисциплин, математики. Эти дисциплины занимали центральное место в учебных программах новых учебных заведений, образцом которых стала Парижская политехническая школа, созданная в 1794 г. Основным организационным звеном высших учебных заведений стали кафедры, задачей которых являлось обеспечение преподавания определенного комплекса учебных дисциплин и подготовка соответствующих учебников, в том числе по математике, физике и т.д.

4. Основные выводы  по классической  науке XVII – XIX вв.

1) Развитие  классической науки – лавинообразный  рост научных открытий и технических  изобретений, который привел к  созданию новой сферы жизни  – техносферы (которую иногда называют второй природой) в виде машинного производства, систем транспорта, связи. К концу XIX в. заложены основы современной промышленной цивилизации.

2) К  концу периода сформировалась  современная система наук, которая включала математику, физику, химию, биологию и комплекс социологических наук. Причем методы естественных наук (экспериментальные методы) стали все теснее сближаться с методами гуманитарных наук. Образовался единый фронт науки и научная сфера стала одной из ведущих сфер в социальной жизни.

3) Сформировалась  система светского массового  образования, которое продолжает  в общих чертах существовать  и в настоящее время. Важную  роль стало играть техническое  образование, хотя сохранилась  система религиозного образования  – против нее никто и не возражал – но существующая обособленно.

Лекции Часть 3 (февраль - апрель).doc

— 259.50 Кб (Просмотреть файл, Скачать файл)

Лекции Часть 4 (апрель).doc

— 145.50 Кб (Просмотреть файл, Скачать файл)

Информация о работе Курс лекций по "Философии"