Генетика. Генетический код

Автор работы: Пользователь скрыл имя, 18 Июля 2011 в 09:12, реферат

Описание работы

Генетика представляет собой одну из основных, наиболее увлекательных и вместе с тем сложных дисциплин современного естествознания. Место генетики среди биологических наук и особый интерес к ней определяются тем, что она изучает основные свойства организмов, а именно наследственность и изменчивость.

Содержание работы

Введение стр. 3
Глава 1
1) Понятие генетики. Генетика - наука о наследственности стр. 4
2) Основные этапы развития генетики стр. 5-9
3) Основные методы генетики стр. 10-12
4) Генетический код стр.13-1
Глава 2
1) Классические законы Менделя стр. 16-19
2) Наследственность и изменчивость стр. 20-22
3) Доминантный и рецессивный ген стр. 23-24
4) 1.1. ДНК как основа наследственности стр. 25-27 1.2. Передача генетической информации от родителей к потомкам стр. 28
5) Достижения и проблемы современной генетики стр. 29
Заключение стр. 30
Список используемой литературы стр. 31

Файлы: 1 файл

Реферат на тему Генетика.Генетический код.doc

— 185.50 Кб (Скачать файл)
 
 
 
 
 

Реферат по Концепции современного естествознания

на  тему:

«Генетика. Генетический код». 
 
 
 
 
 
 
 
 
 
 
 

Содержание                                                                                                   стр. 2

 

Введение                                                                                                                   стр. 3 

Глава 1

  1. Понятие генетики. Генетика - наука о наследственности                        стр. 4
  1. Основные этапы развития генетики                                                           стр. 5-9
  1. Основные  методы генетики                                                                         стр. 10-12
  2. Генетический код                                                                                          стр.13-15
 
 

Глава 2  

  1. Классические  законы Менделя                                                                   стр. 16-19
  2. Наследственность и изменчивость                                                             стр. 20-22
 
  1. Доминантный и рецессивный ген                                                               стр. 23-24
 
  1. 1.1. ДНК как основа наследственности                                                      стр. 25-27

            1.2. Передача генетической информации от родителей к потомкам       стр. 28

  1. Достижения и проблемы современной генетики                                      стр. 29
 

Заключение                                                                                                               стр. 30 

Список  используемой литературы                                                                      стр. 31

  

Введение

      Генетика  представляет собой одну из основных, наиболее увлекательных и вместе с тем сложных дисциплин современного естествознания. Место генетики среди  биологических наук и особый интерес к ней определяются тем, что она изучает основные свойства организмов, а именно наследственность и изменчивость.

      В результате многочисленных – блестящих  по своему замыслу и тончайших  по исполнению – экспериментов в  области молекулярной генетики современная биология обогатилась двумя фундаментальными открытиями, которые уже нашли широкое отражение в генетике человека, а частично и выполнены на клетках человека. Это показывает неразрывную связь успехов генетики человека с успехами современной биологии, которая все больше и больше становится связана с генетикой.

      Первое  – это возможность работать с  изолированными генами. Она получена благодаря выделению гена в чистом виде и синтезу его. Значение этого  открытия трудно переоценить. Важно подчеркнуть, что для синтеза гена применяют разные методы, т.е. уже имеется выбор, когда речь пойдет о таком сложном механизме как человек.

      Второе  достижение – это доказательство включения чужеродной информации в  геном, а также функционирования его в клетках высших животных и человека. Материалы для этого открытия накапливались из разных экспериментальных подходов. Прежде всего, это многочисленные исследования в области вирусо-генетической теории возникновения злокачественных опухолей, включая обнаружение синтеза ДНК на РНК-матрице. Кроме того, стимулированные идеей генетической инженерии опыты с профаговой трансдукцией подтвердили возможность функционирования генов простых организмов в клетках млекопитающих, включая клетки человека.  

      Без преувеличения можно сказать, что, наряду с молекулярной генетикой, генетика человека относится к наиболее прогрессирующим разделам генетики в целом. Ее исследования простираются от биохимического до популяционного, с включением клеточного и организменного уровней. 
 
 

   Глава 1

   1. Понятие генетики.  Генетика - наука о наследственности

     Генетика-наука о наследственности и изменчивости организмов. Генетика- дисциплина, изучающая механизмы и закономерности наследственности и изменчивости организмов, методы управления этими процессами. Она призвана раскрыть законы воспроизведения живого по поколениям, появление у организмов новых свойств, законы индивидуального развития особи и материальной основы исторических преобразований организмов в процессе эволюции. Первые две задачи решают теория гена и теория мутаций. Выяснение сущности воспроизведения для конкретного разнообразия форм жизни требует изучения наследственности у представителей, находящихся на разных ступенях эволюционного развития. Объектами генетики являются вирусы, бактерии, грибы, растения, животные и человек. На фоне видовой и другой специфики в явлениях наследственности для всех живых существ обнаруживаются общие законы. Их существование показывает единство органического мира. История генетики начинается с 1900 года, когда независимо друг от друга Корренс, Герман и де Фриз открыли и сформулировали законы наследования признаков, когда была переиздана работа Г. Менделя УОпыты над растительными гибридамиФ. С того времени генетика в своем развитии прошла три хорошо очерченных этапа - эпоха Классической генетики (1900-1930), эпоха неоклассицизма (1930-1953) и эпоха синтетической генетики, которая началась в 1953 году. На первом этапе складывался язык генетики, разрабатывались методики исследования, были обоснованы фундаментальные положения, открыты основные законы. В эпоху неоклассицизма стало возможным вмешательство в механизм изменчивости, дальнейшее развитие получило изучение гена и хромосом, разрабатывается теория искусственного мутагенеза, что позволило генетике из теоретической дисциплины перейти к прикладной. Новый этап в развитии генетики стал возможным благодаря расшифровке структуры УзолотойФ молекулы ДНК в 1953 г. Дж. Уотсоном и Ф.Криком. Генетика переходит на молекулярный уровень исследований. Стало возможным расшифровать структуру гена, определить материальные основы и механизмы наследственности и изменчивости. Генетика научилась влиять на эти процессы, направлять их в нужное русло. Появились широкие возможности соединения теории и практики. 

2. Основные этапы развития генетики

      Истоки  генетики, как и всякой науки, следует  искать в практике. Генетика возникла в связи с разведением домашних животных и возделыванием растений, а также с развитием медицины. С тех пор как человек стал применять скрещивание животных и растений, он столкнулся с тем фактом, что свойства и признаки потомства зависят от свойств избранных для скрещивания родительских особей. Отбирая и скрещивая лучших потомков, человек из поколения в поколение создавал родственные группы – линии, а затем породы и сорта с характерными для них наследственными свойствами.

      Хотя  эти наблюдения и сопоставления  еще не могли стать базой для  формирования науки, однако бурное развитие животноводства и племенного дела, а также растениеводства и  семеноводства во второй половине XIX века породило повышенный интерес к анализу явления наследственности.

      Развитию  науки о наследственности и изменчивости особенно сильно способствовало учение Ч. Дарвина о происхождении видов, которое внесло в биологию исторический метод исследования эволюции организмов. Сам Дарвин приложил немало усилий для изучения наследственности и изменчивости. Он собрал огромное количество фактов, сделал на их основе целый ряд правильных выводов, однако ему не удалось установить закономерности наследственности. Его современники, так называемые гибридизаторы, скрещивавшие различные формы и искавшие степень сходства и различия между родителями и потомками, также не смогли установить общие закономерности наследования.

      Еще одним условием, способствовавшим становлением генетики как науки, явились достижения в изучении строения и поведения соматических и половых клеток. Еще в 70-х годах прошлого столетия рядом исследователей-цитологов (Чистяковом в 1972 г., Страсбургером в 1875 г.) было открыто непрямое деление соматической клетки, названное кариокинезом (Шлейхером в 1878 г.) или митозом (Флеммингом в 1882 г.). Постоянные элементы ядра клетки в 1888 г. по предложению Вальдейра получили название “хромосомы”. В те же годы Флемминг разбил весь цикл деления клетки на четыре главные фазы: профаза, метафаза, анафаза и телофаза.

      Одновременно  с изучением митоза соматической клетки шло исследование развития половых  клеток и механизма оплодотворения у животных и растений. О. Гертвиг  в 1876 г. впервые у иглокожих устанавливает слияние ядра сперматозоида с ядром яйцеклетки. Н.Н. Горожанкин в 1880 г. и Е. Страсбургер в 1884 г. устанавливает то же самое для растений: первый – для голосеменных, второй – для покрытосеменных.

        В те же Ван-Бенеденом (1883 г.) и другими выясняется кардинальный факт, что в процессе развития половые клетки, в отличие от соматических, претерпивают редукцию числа хромосом ровно вдвое, а при оплодотворении – слиянии женского и мужского ядра – восстанавливается нормальное число хромосом, постоянное для каждого вида. Тем самым было показано, что для каждого вида характерно определенное число хромосом.

      Итак, перечисленные условия способствовали возникновению генетики как отдельной  биологической дисциплины – дисциплины с собственными предметом и методами исследования.

      Официальным рождением генетики принято считать  весну 1900 г., когда три ботаника, независимо друг от друга, в трех разных странах, на разных объектах, пришли к открытию некоторых важнейших закономерностей  наследования признаков в потомстве гибридов. Г. де Фриз (Голландия) на основании работы с энотерой, маком, дурманом и другими растениями сообщил “о законе расщепления гибридов”; К. Корренс (Германия) установил закономерности расщепления на кукурузе и опубликовал статью “Закон Грегора Менделя о поведении потомства у расовых гибридов”; в том же году К. Чермак (Австрия) выступил в печати со статьей (Об искусственном скрещивании у Pisum Sativum).

      Наука почти не знает неожиданных открытий. Самые блестящие открытия, создающие  этапы в ее развитии, почти всегда имеют своих предшественников. Так случилось и с открытием законов наследственности. Оказалось, что три ботаника, открывших закономерность расщепления в потомстве внутривидовых гибридов, всего-навсего “переоткрыли” закономерности наследования, открытые еще в 1865 г. Грегором Менделем и изложенные им в статье “Опыты над растительными гибридами”, опубликованной в “трудах” Общества естествоиспытателей в Брюнне (Чехословакия).

      Г. Мендель на растениях гороха разрабатывал методы генетического анализа наследования отдельных признаков организма и установил два принципиально важных явления:

    1. признаки определяются отдельными наследственными факторами, которые передаются через половые клетки;
    2. отдельные признаки организмов при скрещивании не исчезают, а сохраняются в потомстве в том же виде, в каком они были у родительских организмов.

      Для теории эволюции эти принципы имели  кардинальное значение. Они раскрыли один из важнейших источников изменчивости, а именно механизм сохранения приспособленности  признаков вида в ряду поколений. Если бы приспособительные признаки организмов, возникшие под контролем отбора, поглощались, исчезали при скрещивании, то прогресс вида был бы невозможен.

      Все последующее развитие генетики было связано с изучением и расширением  этих принципов и приложением их к теории эволюции и селекции.

      Из  установленных принципиальных положений  Менделя логически вытекает целый  ряд проблем, которые шаг за шагом  получают свое разрешение по мере развития генетики. В 1901 г. де Фриз формулирует  теорию мутаций, в которой утверждается, что наследственные свойства и признаки организмов изменяются скачкообразно – мутационно.

      В 1903 г. датский физиолог растений В. Иоганнсен  публикует работу “О наследовании в популяциях и чистых линиях”, в  которой экспериментально устанавливается, что относящиеся к одному сорту внешне сходные растения являются наследственно различными  - они составляют популяцию. Популяция состоит из наследственно различных особей или родственных групп – линий. В этом же исследовании наиболее четко устанавливается, существование двух типов изменчивости организмов: наследственной, определяемой генами, и ненаследственной, определяемой случайным сочетанием факторов, действующих на проявление признаков.

      На  следующем этапе развития генетики было доказано, что наследственные формы связаны с хромосомами. Первым фактом, раскрывающим роль хромосом в наследственности, было доказательство роли хромосом в определении пола у животных и открытие механизма расщепления по полу 1:1.

      С 1911 г. Т. Морган с сотрудниками в Колумбийском университете США начинает публиковать серию работ, в которой формулирует хромосомную теорию наследственности. Экспериментально доказывая, что основными носителями генов являются хромосомы, и что гены располагаются в хромосомах линейно.

      В 1922 г. Н.И. Вавилов формулирует закон гомологических рядов в наследственной изменчивости, согласно которому родственные по происхождению виды растений и животных имеют сходные ряды наследственной изменчивости. Применяя этот закон, Н.И. Вавилов установил центры происхождения культурных растений, в которых сосредоточено наибольшее разнообразие наследственных форм.

      В 1925 г. у нас в стране Г.А. Надсон и Г.С. Филиппов на грибах, а в 1927 г. Г. Мёллер в США на плодовой мушке  дрозофиле получили доказательство влияния рентгеновых лучей на возникновение наследственных изменений. При этом было показано, что скорость возникновения мутаций увеличивается более чем в 100 раз. Этими исследованиями была доказана изменчивость генов под влиянием факторов внешней среды. Доказательство влияния ионизирующих излучений на возникновение мутаций привело к созданию нового раздела генетики – радиационной генетики, значение которой еще более выросло с открытием атомной энергии.

Информация о работе Генетика. Генетический код