Мейоз и его генетическая сущность

Автор работы: Пользователь скрыл имя, 10 Июня 2015 в 10:00, контрольная работа

Описание работы

Мейоз (от греч. мейозис - уменьшение) - способ деления клеток, приводящий к уменьшению в них числа хромосом вдвое. Мейоз служит ключевым звеном гаметогенеза у животных и спорогенеза у растений, в результате которого из диплоидных клеток образуются гаплоидные клетки. Мейоз протекает сходно почти у всех организмов. Он состоит из двух последовательных клеточных делений - мейоза I (первое деление) и мейоза II (второе деление), разделенных непродолжительным периодом интеркинеза. При этом репликация ДНК предшествует лишь первому делению.

Файлы: 1 файл

генетика.docx

— 1.76 Мб (Скачать файл)

расщепляются и расходятся в новые дочерние клетки. Следовательно, в результате двух последовательных ме-йотических делений из одной клетки с диплоидным набором хромосом образуются четыре клетки с гаплоидным набором хромосом. В зрелых гаметах число хромосом и количество ДНК вдвое меньше, чем в соматических клетках.

При образовании как мужских, так и женских половых клеток происходят принципиально одни и те же процессы, хотя в деталях они несколько различаются.

Очень существенным отличием мейоза при овогенезе является наличие специальной стадии - диктиотены, отсутствующей при сперматогенезе. Она наступает вслед за диплонемой. На этой стадии мейоз в овоцитах прерывается на многие годы и переход к диакинезу наступает лишь при созревании яйцеклетки.

Значение мейотического деления заключается в следующем:

1. Это тот механизм, который обеспечивает поддержание постоянства числа хромосом. Если бы не происходило редукции числа хромосом при гаметогенезе, то из поколения в поколение возрастало бы их число и был бы утрачен один из существенных признаков каждого  вида  - постоянство   числа хромосом.

2.  При мейозе  образуется  большое количество  различных новых комбинаций негомологичных  хромосом. Ведь в диплоидном наборе они двойного  происхождения:  в  каждой   гомологичной паре одна из хромосом от отца,  другая — от матери. При мейозе хромосомы отцовского и материнского происхождения образуют   в сперматозоонах и яйцеклетках большое количество новых сочетаний, а именно 2n, где п — число пар  хромосом. Следовательно, у организма,  имеющего три пары  хромосом, этих сочетаний окажется 23, т. е. 8; у дрозофилы, имеющей 4 пары хромосом, их будет 24. т. е. 16, а у человека — 223, что составляет 8388608.

3. В  процессе   кроссинговера  также происходит рекомбинация генетического   материала.   Практически все хромосомы,   попадающие в гаметы, имеют   участки,   происходящие как от первоначально  отцовских, так и от первоначально материнских хромосом. Этим достигается еще большая степень перекомбинации  наследственного материала. В  этом одна из причин изменчивости организмов, дающей материал для отбора.

5. Моногибридное  скрещивание, хромосомное обоснование

1 и 2 законов Менделя

Основные закономерности передачи наследственных признаков от родителей к потомкам были установлены Г. Менделем во второй половине XIX в. Он скрещивал растения гороха, различающиеся по отдельным признакам, и на основе полученных результатов обосновал идею о существовании наследственных задатков, ответственных за проявление признаков. В своих работах Мендель применил метод гибридологического анализа, ставшего  универсальным в изучении закономерностей наследования признаков у растений, животных и человека.

 В отличие от своих предшественников, пытавшихся проследить наследование  многих признаков организма в  совокупности, Мендель исследовал  это сложное явление аналитически. Он наблюдал  наследование всего лишь одной пары или небольшого числа альтернативных (взаимоисключающих) пар признаков у сортов садового гороха, а именно: белые и красные цветки;  низкий  и  высокий  рост; желтые и зеленые, гладкие и морщинистые семена гороха и т. п. Такие  контрастные  признаки называются   аллелями, а термин “аллель” и “ген” употребляют как синонимы.

Закон единообразия гибридов первого поколения

Проявление у гибридов признака только одного из родителей Мендель назвал доминированием.

 
Рис. 1. Цитологические основы моногибридного расщепления

Моногибридным  называется  скрещивание, при котором родительские  формы  отличаются  друг  от друга по одной паре контрастных, альтернативных признаков.

 Признак - любая особенность организма, т. е. любое отдельное его качество или свойство, по которому можно различить две особи. У растений это форма венчика (например, симметричный - асимметричный) или его окраска (пурпурный - белый), скорость созревания растений (скороспелость -  позднеспелость), устойчивость или восприимчивость к заболеванию и т. д. 
Фенотип - совокупность всех признаков организма, начиная с внешних и кончая особенностями строения и функционирования клеток, тканей и органов. Этот термин может употребляться и по отношению к одному из альтернативных признаков. Признаки и свойства организма проявляются под контролем наследственных факторов, т. е. генов. Совокупность всех генов организма называют генотипом.

Мендель установил также, что все гибриды F1 оказались единообразными (однородными) по каждому из семи исследуемых им признаков.

При скрещивании двух гомозиготных организмов, относящихся к разным чистым линиям и отличающихся друг от друга по одной паре альтернативных признаков, всё первое поколение гибридов (F1) окажется единообразным и будет нести признак одного из родителей. При скрещивании организмов, различающихся по одной паре контрастных признаков, за которые отвечают аллели одного гена, первое поколение гибридов единообразно по фенотипу и генотипу. По фенотипу все гибриды первого поколения характеризуются доминантным признаком, по генотипу всё первое поколение гибридов гетерозиготное

Этот закон также известен как «закон доминирования признаков». Его формулировка основывается на понятии чистой линии относительно исследуемого признака  - на современном языке это означает гомозиготность особей по этому признаку. Мендель же формулировал чистоту признака как отсутствие проявлений противоположных признаков у всех потомков в нескольких поколениях данной особи при самоопылении.

При скрещивании чистых линий гороха с пурпурными цветками и гороха с белыми цветками Мендель заметил, что взошедшие потомки растений были все с пурпурными цветками, среди них не было ни одного белого. Мендель не раз повторял опыт, использовал другие признаки. Если он скрещивал горох с желтыми и зелеными семенами, у всех потомков семена были желтыми. Если он скрещивал горох с гладкими и морщинистыми семенами, у потомства были гладкие семена. Потомство от высоких и низких растений было высоким. Итак, гибриды первого поколения всегда единообразны по данному признаку и приобретают признак одного из родителей. Этот признак (более сильный, доминантный), всегда подавлял другой (рецессивный).

закон Менделя: «При скрещивании двух гомозиготных организмов, относящихся к разным чистым линиям и отличающихся друг от друга по одной паре альтернативных проявлений признака, всё первое поколение гибридов (F1) окажется единообразным и будет нести проявление признака одного из родителей.»

Закон расщепления признаков «При скрещивании двух гетерозиготных потомков первого поколения между собой во втором поколении наблюдается расщепление в определенном числовом отношении: по фенотипу 3:1, по генотипу 1:2:1.»

Скрещиванием организмов двух чистых линий, различающихся по проявлениям одного изучаемого признака, за которые отвечают аллели одного гена, называется моногибридное скрещивание.

Явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несёт доминантный признак, а часть -  рецессивный, называется расщеплением.

 Следовательно, расщепление - это  распределение доминантных и  рецессивных признаков среди  потомства в определённом числовом  соотношении. Рецессивный признак  у гибридов первого поколения  не исчезает, а только подавляется  и проявляется во втором гибридном  поколении.

Условия выполнения законов Менделя

Для совпадения теоретически ожидаемого соотношения особей определенных фенотипов с реально наблюдаемым, необходимо соблюдение следующих условий:

гомозиготность исходных форм;

альтернативное проявление признаков в каждой паре; равная вероятность образования у гибрида гамет с разными аллелями;

одинаковая жизнеспособность разных гамет;

случайный характер сочетания гамет при оплодотворении;

одинаковая жизнеспособность зигот с разными комбинациями генов;

достаточная для получения достоверных результатов численность особей во втором поколении;

независимость проявления признаков от внешних условий и от остальных генов генотипа в целом.

На практике эти условия, как правило, соблюдаются у большинства организмов, включая человека. Одним из главных достижений Менделя является его экспериментальное доказательство дискретности наследственных  факторов, когда каждому признаку соответствует отдельный наследственный фактор (ген). Такой тип наследования позднее был назван моногенным, в отличие от полигенного, обусловленного совместным действием n-числа генов. Дискретность проявляется в расхождении двух аллелей одного гена, локализованных в гомологичных хромосомах, в разные гаметы (принцип чистоты гамет). Дискретная локализация генов в разных хромосомах обусловливает их комбинаторику в мейозе, которая выявляется на фенотипическом уровне в соотношении 9:3:3:1 в дигибридном скрещивании.

В начале XX века были построены первые генетические карты у дрозофилы и кукурузы, подтверждающие дискретность генов в хромосомах. Менделевские  законы наследования после переоткрытия были подтверждены на множестве различных объектов и, в частности, на классическом генетическом объекте - Drosophila melanogaster, который используется как в научных исследованиях, так и на практических занятиях студентов, изучающих генетику. Общее, что объединяет все объекты, на которых можно убедиться в правильности менделевских законов, - диплоидный набор хромосом в соматических клетках, наличие мейоза с образованием гаплоидных гамет и равновероятными комбинациями негомологичных хромосом, взаимодействие аллельных генов по типу доминантности  /рецессивности. По законам Менделя наследуются не только нормальные, но и мутантные признаки, в том числе и некоторые болезни у человека.

Оценивая значение работы Г. Менделя для развития науки, выдающийся отечественный генетик Н.В. Тимофеев-Ресовский писал: «Его (Менделя) величие в том, что, зная и учитывая все явления, открытые (его предшественниками), но точно не проанализированные, он так поставил свои опыты и обработал их результаты, что смог дать точный, количественный анализ наследования и перекомбинирования элементарных наследственных признаков в чреде поколений. Из полученных экспериментальных данных он смог сформулировать вероятностно - статистические и комбинаторные закономерности   наследования.  В  этом   Г. Мендель опередил свое время, став  пионером  истинного  внедрения  строгого   математического  мышления в биологию и создал основу быстрого и прекрасного по своей стройности развития генетики в нашем веке».

Условия выполнения закона чистоты гамет

Нормальный ход мейоза. В результате нерасхождения хромосом в одну гамету могут попасть обе гомологичные хромосомы из пары. В этом случае гамета будет нести по паре аллелей всех генов, которые содержатся в данной паре хромосом.

6. Доказательство 3-го закона Менделя на примере дигибридного скрещивания

Организмы различаются по многим генам и, как следствие, по многим признакам. Чтобы одновременно проанализировать наследование нескольких признаков, необходимо изучить наследование каждой их пары в отдельности, а затем сопоставить и объединить все эти наблюдения. Именно так поступил Мендель.

Скрещивание, при котором родительские формы отличаются по двум парам альтернативных признаков (по двум парам аллелей), называется дигибридным. 

Гибриды, гетерозиготные по двум генам, называются дигетерозиготными.

Независимое наследование признаков. Для дигибридного скрещивания Мендель использовал гомозиготные растения гороха, различающиеся одновременно по двум парам признаков. Одни из скрещиваемых растений имели желтые гладкие семена, другие – зеленые морщинистые.

Все гибриды первого поколения этого скрещивания имели желтые гладкие семена. Следовательно, желтая окраска семян доминирует над зеленой и гладкая форма над морщинистой. Обозначим аллели желтой окраски А, зеленой-  а, гладкой формы В, морщинистой - в. Гены, определяющие  развитие  разных пар признаков, называются неаллельными. В данном случае гены окраски семени  А и а неаллельным генам, определяющим поверхность семян, – В и в. Родительские растения будут иметь генотипы ААВВ и аавв. Генотип гибридов F1 будет АаВв, т.е. характеризуется дигетерозиготностью.

Во втором поколении после самоопыления гибридов F1 в соответствии с законом расщепления вновь появились морщинистые и зеленые семена. При  этом в опытах Менделя наблюдались следующие сочетания признаков: 315 желтых гладких, 101 желтое морщинистое, 108 зеленых гладких и 32 зеленых морщинистых семян, т.е. соотношение, очень близкое к 9:3:3:1.

Чтобы выяснить, как ведет себя каждая пара аллелей в потомстве дигетерозиготы, целесообразно провести раздельный учет каждой пары признаков – по форме и окраске семян. Из 556 семян Менделем получено 423 гладких и 133 морщинистых, а также 416 желтых и 140 зеленых. Таким образом, и в этом случае соотношение доминантных и рецессивных форм по каждой паре признаков свидетельствует о моногибридном расщеплении по фенотипу 3:1. Отсюда следует, что дигибридное расщепление представляет собой по существу два независимо идущих моногибридных скрещивания.

Проведенные наблюдения убедительно показывают, что отдельные пары признаков ведут себя в наследовании независимо. Этот феномен отражает сущность третьего закона Менделя  - закона независимого наследования признаков, или независимого комбинирования генов «При скрещивании особей, отличающихся  друг  от друга по двум и более парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетания»..

Информация о работе Мейоз и его генетическая сущность