Адресная доставка лекарств в пораженные клетки

Автор работы: Пользователь скрыл имя, 05 Ноября 2010 в 00:35, Не определен

Описание работы

Доклад

Файлы: 1 файл

НАНОМЕДИЦИНА.docx

— 45.81 Кб (Скачать файл)

  Технология  «лаборатория-на-чипе» быстрее, дешевле и точнее, чем обычные технологии. Более того, эти крошечные чипы можно спроектировать для выполнения одновременно нескольких тестов. На рисунке 6.5 показана схема типичной «лаборатории-на-чипе», выполняющей сразу несколько разных тестов.

  Особенность нанотехнологий в том, что они позволяют создавать очень небольшие специализированные системы. На рисунке 6.5 показано только 16 анализаторов, но «лаборатория-на-чипе» может содержать сотни и даже тысячи таких анализаторов для тестирования разных химических соединений и их производных. Таким образом, с помощью «лаборатории-на-чипе» пациент может пройти один универсальный тест на наличие почти всех возможных химических веществ. Времена, когда для этого пришлось бы выполнять длительную серию многочисленных анализов, уходят в прошлое.

  Наномасштабная «лаборатория-на-чипе» позволит смешивать, разделять, тестировать и обрабатывать биологические образцы для определения их текущего состояния, наличия инфекционных и других болезней. С ее помощью можно будет проследить за взаимодействием клеток: передачей сигналов, работой энзимов и доставкой питательных веществ, образованием клеточных продуктов и многим другим.

  IBM создала биочип для диагностики заболеваний

  Исследователи из лаборатории IBM в Цюрихе совместно  с медицинским центром Базельского университета (University Hospital of Basel) разработали чип-лабораторию, способную в течение 15 секунд определить 16 различных заболеваний. 

  Чип использует капиллярный принцип  отбора образца крови или сыворотки. Основным преимуществом новинки  разработчики считают технологичность  производства лаборатории-на-чипе и скорость анализа. Чип размером 10х50 мм изготавливается по стандартной литографической технологии на основе из кремния и содержит набор микрометровых каналов-капилляров для образцов .

  Примечательно, что для анализа достаточно всего 7 пиколитров образца, а время вывода результата составляет меньше минуты. Это важный момент в условиях, когда состояние пациента критическое и ухудшается с каждой секундой. К примеру, нарушения сердечной деятельности, как наиболее частый случай, требуют оперативных мер уже в первые минуты кризиса. Исследователи так же отмечают, что, в зависимости от используемых реактивов-индикаторов, разработанный чип может идентифицировать весьма широкий спектр вирусных и бактериологических заболеваний, таких как рак или свиной грипп. Считывание данных анализа с чипа происходит посредством обычного SMOS или CCD-сенсора, такого как в цифровых камерах. Однако в стремлении снизить стоимость чипа-лаборатории и для универсальности решения, разработчики не стали интегрировать сенсор в свой биочип. Коммерческое производство новинки IBM планирует начать совместно с бельгийской компанией Coris BioConcept. 
 

  Нанотехнологии против вирусов и бактерий

  Нанотехнологии используются не только для диагностики инфекционных заболеваний, но и для уничтожения патогенных микроорганизмов и их элиминации из организма человека. Определенные составы нанопорошков обладают выраженными противомикробными свойствами. Такие порошки состоят из нанокристаллических частиц оксидов нетоксичных металлов с присоединенными к ним активными формами галогенов (например, MgO•Cl2, СаО•Вr2). При контакте этих частиц с патогенными бактериями (например, Escherichia coli, Bacillus cereus, Bacillus globigii) последние гибнут в течение нескольких минут.

  Серебро

  Как уже отмечалось, свойства у наночастицы серебра на самом деле уникальные.

  Во-первых, это феноменальная бактерицидная  и антивирусная активность. Об антимикробных свойствах, присущих ионам серебра, человечеству известно уже очень давно. Установлено, что наночастицы серебра в тысячи раз эффективнее борются с бактериями и вирусами, чем серебряные ионы.

  Кроме того, в отличие от антибиотиков, убивающих не только вредоносные  вирусы, но и пораженные ими клетки, действие наночастиц очень избирательно: они действуют только на вирусы, клетка при этом не повреждается!

  Например, фирма “Гелиос” выпускает зубную пасту “Знахарь” с наночастицами серебра, эффективно защищающую от различных инфекций. Также небольшие концентрации наночастиц добавляют в некоторые кремы из серии “элитной” косметики для предотвращения их порчи во время использования. Добавки на основе серебряных наночастиц применяются в качестве антиаллергенного консерванта в кремах, шампунях, косметических средствах для макияжа и т.д. При использовании наблюдается также противовоспалительный и заживляющий эффект.

  Ткани, модифицированные серебряными наночастицами, являются, по сути, самодезинфицирующимися. На них не может “ужиться” ни одна болезнетворная бактерия или вирус. Наночастицы не вымываются из ткани при стирке, а эффективный срок их действия составляет более шести месяцев, что говорит о практически неограниченных возможностях применения такой ткани в медицине и быту. Материал, содержащий наночастицы серебра, незаменим для медицинских халатов, постельного белья, детской одежды, антигрибковой обуви и т.д., и т.п.

  Наночастицы способны долго сохранять бактерицидные свойства после нанесения на многие твердые поверхности (стекло, дерево, бумага, керамика, оксиды металлов и др.). Это позволяет создать высокоэффективные дезинфицирующие аэрозоли длительного срока действия для бытового применения. В отличие от хлорки и других химических средств обеззараживания, аэрозоли на основе наночастиц не токсичны и не вредят здоровью людей и животных.

  Фирма Samsung уже добавляет наночастицы серебра в сотовые телефоны, стиральные машины, кондиционеры и другую бытовую технику.

  Нанотехнологии в кардиологии

  Использование нанотехнологии и наноматериалов в кардиологии приводит к существенному прогрессу в диагностике и терапии сердечнососудистых заболеваний.

  Борьба  с последствиями артериального  и венозного тромбоза остается важнейшей  задачей современной кардиологии. В последнее время получены данные о тромболитическом эффекте малоинтенсивного ультразвука. Механизм терапевтического эффекта нанопузырьков включает их прикрепление к тромбу, фрагментацию (после облучения ультразвуком) и механическое разрушение тромба. Эта методика получила название сонотромболизиса (Daffertshofer, Hennerici, 2006).

  Наноматериалы завоевывают важные позиции и в технологии изготовления внутрисердечных и внутрисосудистых имплантантов.

  Нанотехнологии в эндокринологии

  В последние годы появились единичные  сообщения о разработке нанороботов, призванных осуществлять контроль уровня гликемии у пациентов с сахарным диабетом (Cavalcanti et al., 2008). Использование такого подхода позволяет избежать многократного, иногда на протяжении многих лет, взятия крови для определения уровня глюкозы. Кроме того, применение нанороботов, мониторирующих уровень глюкозы в крови, позволит повысить степень информированность пациентов о заболевании и обеспечить более четкий контроль гликемии. Наличие циркулирующих в крови нанороботов может дать возможность одновременного анализа уровня гликемии в сосудах различных органов. При этом создается уникальная возможность оценивать степень поглощения глюкозы различными тканями и идентифицировать ткани с наиболее выраженными нарушениями захвата глюкозы. Дополнительную диагностическую информацию может дать мониторинг концентрации глюкозы в крови у пациента, находящегося в различных состояниях (покой, физическая нагрузка, до и после приема пищи и т. д.).

  Нанотехнологии в онкологии, гематологии и трансфузиологии

  В диагностике опухолей используются различные типы наночастиц, включая квантовые точки, нанооболочки, коллоидные наночастицы металлов, суперпарамагнитные наночастицы и углеродные наноструктуры.

  Основной  проблемой на пути использования  квантовых точек для диагностики  опухолей является достаточно высокая  токсичность металлов, входящих в  состав первых. Для уменьшения токсичности  применяются пассивирующие покрытия, например, сульфидами цинка и кадмия. Фотостабильность покрытых этими материалами квантовых точек не страдает. Дополнительное улучшение биосовместимости квантовых точек достигается их покрытием полиэтиленгликолем, белками и углеводами (Hartman et al., 2008). Нанооболочки, покрытые тонким слоем золота, могут использоваться для одновременной диагностики и терапии опухолей.

    В настоящее время имеется  опыт четкой визуализации злокачественных  опухолей прямой кишки (Тота et al., 2005) и рака молочной железы (Funovics et al., 2004) с помощью суперпарамагнитных частиц с присоединенными к их поверхности моноклональными антителами.

  Углеродные нанотрубки также рассматриваются в качестве перспективных противоопухолевых наноструктур.

  Углеродные нанотрубки победили раковую опухоль

  Группа  ученых из Уэйк-Форестского университета, Вирджинского политехнического института и университета штата и Университета Райса (все — США) провела успешные эксперименты по лечению рака почки у мышей с помощью многослойных углеродных нанотрубок.

  Авторы  провели серию экспериментов  на бестимусных мышах, иммунная система которых функционирует менее эффективно. Шестидесяти животным были трансплантированы фрагменты опухолей, которым ученые дали увеличиться до среднего диаметра в 5,5 мм; после этого мыши были случайным образом разделены на шесть групп. Животные из первой группы не получали никакого лечения и умерли приблизительно через 30 дней после начала наблюдений. Представителям второй группы исследователи ввели в пораженные органы раствор, содержащий многослойные углеродные нанотрубки; это, как выяснилось, не принесло положительных результатов. Опухоли мышей третьей группы авторы облучали с помощью лазера, что также не оказало никакого влияния на развитие болезни.

  Животным  из оставшихся трех групп были введены  разные дозы раствора нанотрубок, а затем на их опухоли воздействовали 30-секундными импульсами лазерного излучения на длине волны 1064 нм с плотностью энергии 3 Вт/см2. Известно, что при попадании ближнего ИК-излучения на нанотрубки они начинают вибрировать и разогревают вещество вокруг себя. Эффективность такой терапии оказалась весьма велика: у восьмидесяти процентов особей, получившую наибольшую дозу раствора, опухоли через некоторое время полностью исчезли. Почти все мыши из этой группы дожили до конца исследования, которое продолжалось около девяти месяцев.

  «Мы наблюдали постепенное уменьшение размеров опухолей, а затем и их полное уничтожение, — говорит г-жа Торти. — Причем мыши не просто выжили: они сохранили нормальный вес, и при их обследовании мы не обнаружили никаких повреждений внутренних тканей и аномалий в поведении. Единственным отрицательным моментом стал ожог кожи, следы которого, впрочем, вскоре пропали. Надеемся, нам удастся найти способ использовать подобную методику для лечения людей». 

  Нанотехнологии в неврологии и нейрохирургии

  Хорошая биосовместимость нанотрубок и их электропроводность делают возможным использование этого класса наноматериалов в качестве матриц для индукции роста нейрональных сетей. Была предложена схема использования пространственно упорядоченных положительно заряженных нанотрубок в качестве трехмерной матрицы для стимуляции роста нейрональных сетей. 

  Нанотехнологии в травматологии и ортопедии

  В последние годы появились новые  методы регенерации костной ткани, основанные на применении наноматериалов. Подобные костные матрицы, содержащие коллаген и гиалуроновую кислоту, уже прошли клинические испытания на пациентах с дефектами костей, возникающими после травмы, удаления опухолей и спондилодеза. Клетки костной ткани также могут эффективно расти и пролиферировать на матрице и нанотрубках, поскольку последние не разрушаются и являются биологически инертными (Zanello et al., 2006). Также, недавно было предложено несколько новых методов регенерации хряща, в том числе после травматических повреждений коленного сустава.

  Нанотехнологии в офтальмологии

  Более 90% всех используемых в офтальмологии  лекарственных форм представлены глазными каплями. Несмотря на относительную  эффективность глазных капель, около 95% активного лекарственного начала не достигает клеток-мишеней вследствие защитного механизма слезотечения. Существует еще одна причина низкой биодоступности лекарственных препаратов, входящих в состав глазных капель, - это высокая плотность роговицы. Для оптимизации доставки лекарственных средств к структурам глаза использовались различные нанопереносчики, включая полимерные наночастицы, дендримеры и липосомы (Vandervoort, Ludwig, 2007). Применение этих наночастиц, нагруженных препаратами, обеспечивало более длительный контакт лекарственного средства с клетками-мишенями. Установлено, что при субконъюнктивальном введении полилактидных наночастиц диаметром 200 нм практически все частицы задерживаются в месте введения. Это позволяет уменьшить частоту закапывания и снизить дозу используемого средства. Те же преимущества нанопереносчиков могут быть востребованными при внутриглазном введении препаратов.

  Нанотехнологии в стоматологии

  Существуют  основания предполагать, что в  ближайшее время произойдет активное внедрение наноматериалов и наноустройств в стоматологию (Freitas, 2000). Применение нанотехнологичных подходов в стоматологии позволит существенно снизить заболеваемость кариесом и другими заболеваниями органов ротовой полости. Один из аспектов наностоматологии – совершенствование приемов местной анестезии с помощью наночастиц.

Информация о работе Адресная доставка лекарств в пораженные клетки