Адресная доставка лекарств в пораженные клетки

Автор работы: Пользователь скрыл имя, 05 Ноября 2010 в 00:35, Не определен

Описание работы

Доклад

Файлы: 1 файл

НАНОМЕДИЦИНА.docx

— 45.81 Кб (Скачать файл)

  Формирование  концепции наномедицины началось еще в середине XX в. В 1959 г. Ричард Фейнман опубликовал свою лекцию под названием «Там, внизу, много места» “There’s Plenty of Room at the Bottom”, в которой он обосновал основные принципы использования нанотехнологии в медицине. Вне всякого сомнения, именно Р. Фейнмана можно считать пророком развития наномедицины, поскольку он предсказал неизбежность перехода медицинских технологий от макроуровня к микроуровню и далее вплоть до атомарного уровня.

  Наномедицина – это, по определению ученого Роберта Фрейтаса (Robert Freitas), «…слежение, исправление, конструирование и контроль над биологическими системами человека на молекулярном уровне с использованием разработанных наноустройств и наноструктур».

  В 1965 г. Шолдерс представил реально работающие микроманипуляторы, которые могли перемещать микроскопические предметы с точностью до 10 нм, с возможностью непосредственно наблюдать за их действиями при помощи ионного микроскопа.

  К 1983 г. Дрекслер начал распространять в узком кругу свою статью “Машины клеточной репарации”, в которой впервые были достаточно подробно исследованы возможности развитой нанотехнологии на основе механических устройств, которые “обеспечили бы разработку систем сенсоров, компьютеров и манипуляторов молекулярных размеров, способных проникать в клетки и репарировать их».

  В 1985 г. Дж. Фейнберг предложил использовать коротковолновую когерентную лазерную энергию для питания и связи с “наносенсорами, имплантированными в человеческий организм. Они могли бы... [контролировать] различные физиологические функции, начиная с подклеточного молекулярного уровня, до уровня тканей и органов..., важные для выявления некоторых механизмов роста и старения”.

  В 1985 г. вышла книга “Робототехника” ("Robotics") под редакцией Марвина Мински (известного ученого в области компьютерной техники и автора пионерских работ по созданию искусственного интеллекта), в которой Мински, на основе представлений Дрекслера, дал краткое описание работы полностью автоматических устройств репарации клеток

  В 1988 г. А. К. Дьюдни представил первую наномедицинскую концепцию наноробота для чистки артерий.

  Наномедицина в последние годы развивается исключительно быстрыми темпами и привлекает всеобщее внимание не только чисто реальными достижениями, но и своим социальным вкладом. Под этим термином (отражающим и перспективу) сегодня понимают применение нанотехнологий в диагностике, мониторинге и лечении заболеваний.

  Все варианты применения нанотехнологии в медицине можно разделить на три большие группы: 1) терапевтические подходы, основанные на применении нанотехнологии, 2) диагностические наномедицинские процедуры, 3) использование наноматериалов в технологии изготовления различных изделий медицинского назначения.

  Конкретизируя изложенные взгляды, сегодняшние конкретные задачи нанотехнологий в медицине можно разделить на несколько групп: наноструктурированные материалы, включая поверхности с нанорельефом, мембраны с наноотверстиями; наночастицы (включая фуллерены и дендримеры); микро- и нанокапсулы; нанотехнологические сенсоры и анализаторы; медицинские применения сканирующих зондовых микроскопов; наноинструменты и наноманипуляторы; микро- и наноустройства различной степени автономности.

Адресная  доставка лекарств в пораженные клетки

  Чтобы лекарство было эффективным важно, чтобы его молекулы попали к нужным клеткам: антидепрессанты попали в мозг, противовоспалительные средства – в места воспалений, антираковые препараты – в опухоль и т. д. Способность молекул вещества попадать в теле пациента туда, где они необходимы, называется биологической усвояемостью.

  Биологическая усвояемость – камень преткновения всей современной фармацевтики. Более 65% денег, потраченных на разработку новых лекарств, выбрасывается на ветер из_за их плохой усвояемости. Один из способов улучшить ее – просто увеличить дозу лекарства. Однако многие лекарства токсичны, и увеличенная доза может вызвать у пациента тяжелые последствия (а порой даже убить). Это особенно важно для противораковых препаратов, которые убивают не только больные, но и здоровые клетки.

  Поэтому сегодня учеными всего мира ведутся активные работы по адресной доставке лекарств, которые будут точно попадать в цель, не повреждая других органов. Для этого пытаются создать некое “транспортное средство” для точной доставки лекарств в клетку, так как многие болезни (не только рак) зависят от нарушения внутриклеточных механизмов, повлиять на которые можно только доставив лекарство в клетку. Поиск молекулярного транспорта начался в восьмидесятые годы, когда исследователи стали активно заниматься генной инженерией. В частности, группе российских ученых под руководством Александра Соболева удалось разработать специальную макромолекулу_транспортер, способную доставить лекарство в дефектную клетку. Опыты, которые ставила группа Соболева на раковых клетках, показали, что эффективность лекарственного вещества, которое доставляется макромолекулой_транспортером в ядро, при различных типах рака может возрастать в 250_1000 раз, а это значит, что во столько же раз можно снизить дозу препарата, чтобы вызвать нужный эффект. Конструкция транспортера состоит из четырех функциональных модулей: лиганда, эндосомолитического модуля, сигнала внутриядерной локализации и собственно носителя лекарства. На первом этапе работает лиганд – модуль, обеспечивающий обнаружение больной клетки (например, раковой), ее “молекулярное узнавание”. Он же отвечает и за поглощение всей конструкции клеткой. Второй модуль – эндосомолитический – разрывает эндосому, “пузырь”, образующийся вокруг транспортера при его втягивании внутрь клетки. Далее в игру вступает третий модуль, который позволяет транспортеру проникнуть через поры ядерной мембраны. И наконец, четвертый модуль, несущий лекарство, позволяет ему приступить к выполнению основной задачи – уничтожению ядра.

  Откуда  взяли модули макромолекулы_транспортера? Один из используемых лигандов был взят из человеческого гормона, обладающего высоким сродством к рецепторам соответствующей клетки_мишени, эндосомолитический модуль – из дифтерийного токсина, модуль внутриядерной доставки – из белка обезьяньего вируса, носитель лекарства – из части гемоглобиноподобного белка кишечной палочки. Далее с помощью генно_инженерных методов была создана единая работоспособная конструкция.

  “Меняя  программу модулей, мы можем получить макромолекулы_транспортеры для лечения любого типа рака. К примеру, если для лечения какого_то заболевания нужно доставить лекарство не в ядро, а в другую органеллу клетки, то будет заменена программа модуля внутриклеточной локализации. Или меняется программа носителя в зависимости от лекарственного средства, которое необходимо доставить”, – объясняет Александр Соболев.

  Транспортер будет представлять собой пузырек  с жидкостью, которую нужно смешивать  с соответствующим лекарством перед  употреблением.

  Во-первых, при использовании наноразмерных переносчиков объем распределения препарата обычно снижается. Во-вторых, происходит снижение токсичности препарата за счет его избирательного накопления в поврежденной ткани и меньшего поступления в здоровые ткани. В-третьих, многие нанопереносчики увеличивают растворимость гидрофобных веществ в водной среде и, таким образом, делают возможным их парентеральное введение. В-четвертых, системы доставки способствуют повышению стабильности препаратов на основе пептидов, олигонуклеотидов и небольших гидрофобных молекул. И, наконец, в-пятых, нанопереносчики представляют собой биосовместимые материалы.

  Одним из примеров использования наноструктур для направленной доставки лекарственных препаратов являются нанооболочки. В отличие от углеродных наночастиц, нанооболочки представляют собой несколько более крупные частицы, состоящие из кремнеземной сердцевины и тонкого золотого покрытия. Нанооболочки покрываются слоем полимера, содержащего лекарственный препарат, и вводятся в организм. После накопления частиц в пораженной ткани (например, в опухоли) производится облучение данной области инфракрасным лазером. Это приводит к селективному поглощению нанооболочками инфракрасных частот и их нагреванию. Нагрев поверхности частицы приводит к высвобождению лекарства из слоя полимера и обеспечивает его локальное действие.

  Использование квантовых точек  в качестве люминесцирующих  маркеров

  Медиков и биологов чрезвычайно интересует, как перемещаются в организме  различные вещества (в частности, лекарства). Отслеживание такого перемещения позволяет им определить, как распределяются и усваиваются в организме новые препараты, то есть какова их биологическая усвояемость. До недавнего времени для подобных исследований применялись различные красители, называемые маркерами, подмешиваемые к исследуемому веществу. Подкрашенные клетки были хорошо видны в оптический микроскоп на фоне бесцветных клеток организма, что позволяло делать довольно точные выводы об их локализации. Но органические красители, во_первых, могут быть токсичными, а во_вторых, для их обнаружения требуется облучение светом лишь определенной частоты, поскольку различные красители отражали различные частоты спектра. Следовательно, для одновременного исследования нескольких препаратов требовалось столько же источников света. Данную проблему удалось решить с помощью нанотехнологий, а точнее – квантовых точек, которые мы рассматривали в одной из предыдущих глав.

  Напоминаем, что квантовые точки – это полупроводниковые кристаллы нанометрового размера, имеющие уникальные химические и физические свойства, не характерные для тех же веществ в макромасштабе. Учеными были получены уникальные флуоресцентные квантовые точки, причем разного цвета. Эти точки дают намного более мощный отблеск света, чем традиционные красители, и обладают особым биоинертным покрытием, которое, с одной стороны, защищает сами квантовые точки от «нападения» ферментов и других биологических молекул, а с другой – не дает возможности токсичным веществам попасть в организм, что очень важно для диагностики заболеваний. Кроме того, разные группы таких нанометок можно освещать одним общим источником. Квантовые точки широко применяются в диагностических целях. В частности, их можно присоединять к биомолекулам типа антител, пептидов, белков или ДНК. А эти комплексы, в свою очередь, могут быть спроектированы так, чтобы обнаруживать другие молекулы (например, типичные для поверхности раковых клеток).

  В одном из опытов квантовые точки  селенида кадмия были соединены со специфическим антителом, реагирующим с поверхностью клеток раковой опухоли. Квантовые точки вводили в кровеносную систему мышей, которая разносила их по организму. Нанокристаллы попадали в опухоль и накапливались там (и практически нигде больше), в результате чего опухоль оказалась хорошо различимой визуально.

  Применение  квантовых точек может существенно расширить диагностические возможности медицины. Ведь можно сконструировать сотни разновидностей квантовых точек, соединяющихся в организме с различными биомолекулами или антигенами, и таким образом находить участки со специфическим сочетанием признаков заболевания.

  Дальнейшие  планы исследователей еще заманчивее. Новые квантовые точки, соединенные с набором биомолекул, будут не только находить и показывать опухоли, но и осуществлять точную адресную доставку новых поколений лекарств.

  Лаборатория на чипе

  А теперь представьте, что такие лаборатории  уже существуют! Называются они лабораториями  на чипе (от англ. lab-on-chip). Один чип размером порядка 4х4 см может заменить целый комплекс оборудования, необходимого для анализа ДНК/РНК, установления родства, определения генетически модифицированных организмов, ранней диагностики онкологических заболеваний, изучения эффективности трансфекции клеток, количественного определения белков, определения уровня экспрессии генов и многого другого!

  При этом такая кроха-лаборатория умеет  анализировать одновременно до 12 разных образцов, а время анализа, занимавшего  раньше недели, сокращается до 15-30 минут.

  Аналогия  с компьютером здесь не случайна, поскольку на первый взгляд лаборатории  на чипе очень похожи на своих электронных  собратьев: они также создаются  на кремниевых подложках, а крохотные  ячейки связываются микро- или нано-"дорожками". Отличие заключается в том, что по дорожкам у них не всегда течет ток. По многим из них течет жидкость из крохотных резервуаров, имплантированных в чип при производстве.

  Функционально ячейки тоже отличаются. Если на микросхеме это могут быть ячейки памяти или  логические элементы, то в лаборатории  на чипе это клапаны, резервуары и  биологические или химические реакторы.

  Реальным  примером подобной технологии могут  служить продукты ведущих в этой области компаний Affymetrix (" GeneChip") или Agilent ("LabChip"), производящих лаборатории на чипе для генетических анализов.

  В таких чипах ДНК анализируется  методом полимеразной цепной реакции (ПЦР). Метод был изобретен в 1987 г.

  Компания CombiMatrix предложила чип размерами  с почтовую марку для определения  биологической опасности. Устройство, содержащее такой чип, может определить присутствие нескольких видов микроорганизмов, применяющихся в составе бактериологического  оружия. На его базе CombiMatrix выпустила детектор HANAA (подходящее название, не правда ли?), который можно использовать в полевых условиях. Прибор помещается в ладони, питается от батареек и весит около одного килограмма.

Информация о работе Адресная доставка лекарств в пораженные клетки