Митоз клетки

Автор работы: Пользователь скрыл имя, 05 Марта 2015 в 14:51, реферат

Описание работы

Наследственность как всеобщее свойство живых организмов тесно связана с другим важнейшим свойством живого — размножением. Благодаря размножению осуществляется преемственность между родительскими особями и их потомством. В основе размножения лежит процесс деления клеток.

Файлы: 1 файл

Митоз клетки1.docx

— 259.15 Кб (Скачать файл)

Митоз клетки

 
Наследственность как всеобщее свойство живых организмов тесно связана с другим важнейшим свойством живого — размножением. Благодаря размножению осуществляется преемственность между родительскими особями и их потомством. В основе размножения лежит процесс деления клеток.

 

Хромосомы: индивидуальность, парность, число

 

 Во время деления клетки хорошо заметны хромосомы. При изучении хромосом разных видов живых организмов было обнаружено, что их набор строго индивидуален. Это касается числа, формы, черт строения и величины хромосом. Набор хромосом в клетках тела, характерный для данного вида растений, животных, называется кариотипом.


Комара                                                             Человека

 

 

 


Растения

 

 

 

 

 

Диплоидный набор хромосом в клетке

В любом многоклеточном организме существует два вида клеток — соматические (клетки тела) и половые клетки, или гаметы. В половых клетках число хромосом в 2 раза меньше, чем в соматических. В соматических клетках все хромосомы представлены парами — такой набор называется диплоидным и обозначается 2/1- Парные хромосомы (одинаковые по величине, форме, строению) называются гомологичными.

В половых клетках каждая из хромосом находится в одинарном числе. Такой набор называется гаплоидным и обозначается п.

 

Митоз. Подготовка клетки к делению

 

Наиболее распространенным способом деления соматических клеток является митоз. Во время митоза клетка проходит ряд последовательных стадий, или фаз, в результате которых каждая дочерняя клетка получает такой же набор хромосом, какой был у материнской клетки.

Во время подготовки клетки к делению — в период интерфазы (период между двумя актами деления) число хромосом удваивается. Вдоль каждой исходной хромосомы из имеющихся в клетке химических соединений синтезируется ее точная копия. Удвоенная хромосома состоит из двух половинок — хроматид. Каждая из хроматид содержит одну молекулу ДНК- В период интерфазы в клетке происходит процесс биосинтеза белка, удваиваются также все важнейшие структуры клетки. Продолжительность интерфазы в среднем 10—20 ч. Затем наступает процесс деления клетки — митоз.

 

Фазы митоза

Во время митоза клетка проходит следующие четыре фазы: профаза, метафаза, анафаза, телофаза.

В профазе хорошо видны ценгриоли  - органоиды, играющие определенную роль в делении дочерних хромосом. Центриолй делятся и расходятся к разным полюсам. От них протягиваются нити, образующие веретено деления, которое регулирует расхождение хромосом к полюсам делящейся клетки. В конце профазы ядерная оболочка распадается, исчезает ядрышко, хромосомы спирализуются и укорачиваются.

Метафаза характеризуется наличием хорошо видимых хромосом, располагающихся в экваториальной плоскости клетки. Каждая хромосома состоит из двух хроматид и имеет перетяжку — центромеру, к которой прикрепляются нити веретена деления. После деления центромеры каждая хроматида становится самостоятельной дочерней хромосомой.

В анафазе дочерние хромосомы расходятся к разным полюсам клетки.

В последней стадии — телофазе — хромосомы вновь раскручиваются и приобретают вид длинных тонких нитей. Вокруг них возникает ядерная оболочка, в ядре формируется ядрышко.

В процессе деления цитоплазмы все ее органоиды равномерно распределяются между дочерними клетками. Весь процесс митоза продолжается обычно 1—2 ч.

В результате митоза все дочерние клетки содержат одинаковый набор хромосом и одни и те же гены. Следовательно, митоз — это способ деления клетки, заключающийся в точном распределении генетического материала между дочерними клетками, обе дочерние клетки получают диплоидный набор хромосом.

Биологическое значение митоза огромно. Функционирование органов и тканей многоклеточного организма было бы невозможно без сохранения одинакового генетического материала в бесчисленны. Неточных поколениях. Митоз обеспечивает такие важные процессы жизнедеятельности, как эмбриональное развитие рост поддержание структурной целостности тканей при полной утрате клеток в процессе их функционирования (замещение погибши эритроцитов, эпителия кишечника и пр.). восстановление органов и тканей после повреждения.

 

 

 

 

 

 

 

 

Размножение. Мейоз. Оплодотворение.

Процессы размножения у живых организмов различны. Однако все их можно свести к двум формам: бесполому и половому

Сущность бесполого размножения

В бесполом размножении участвует только одна родительская особь; новый организм может возникнуть из одной клетки или из нескольких неспециализированных клеток материнского организма.

В природе встречается несколько видов бесполого размножения спорообразование, вегетативное размножение, почкование и до У некоторых организмов бесполое и половое размножение закономерно сменяют друг друга. Это явление называется  чередованием поколений. Например, в тенистых лесах можно увидеть заросли папоротника - это бесполое поколение растении, которое размножается с помощью спор. Из спор развивается половое поколение - заросток папоротника. Другой пример - чередование вегетативного и полового размножения у целого ряда кишечнополостных животных.

Бесполое размножение эволюционно возникло раньше полового С его помощью численность вида может быстро увеличиться. Однако бесполой размножение не сопровождается повышением наследственной изменчивости потомков: при таких формах все потомки генетически сходны с материнской особью, так как развиваются из клеток, делящихся митозом. 

Половое размножение, его значение для эволюции пoлoвoe размножение имеет большое эволюционное преимущество по сравнению с бесполым. Это обусловлено тем, что в половом размножении принимают участие, как правило, две родительские особи. В результате слияния мужской и женской половых клеток (гамет), несущих гаплоидный набор хромосом, образуется оплодотворенная яйцеклетка — зигота, несущая наследственные задатки обоих родителей. Благодаря этому увеличивается наследственная изменчивость потомков и повышается их возможность в приспособлении к условиям среды обитания.

 

У низших многоклеточных организмов гаметы одинаковых размеров, у более высокоорганизованных растений и животных половые клетки не одинаковы по величине. Одни гаметы богаты запасными питательными веществами и неподвижны — яйцеклетки; другие, маленькие, подвижные — сперматозоиды. Образование гамет происходит в специализированных органах — половых железах- У высших животных женские гаметы образуются в яичниках, мужские — в семенниках.

 

Мейоз, его сущность

 

Половое размножение грибов, растений, животных связано с образованием специализированных половых клеток. Особый тип деления клеток, в результате которого образуются зрелые половые клетки (яйцеклетки и сперматозоиды), называется мейозом.

В половых железах в процессе образования половых клеток, как сперматозоидов, так и яйцеклеток, выделяют ряд стадий. В первой стадии — размножения— первичные половые клетки делятся путем митоза, в результате чего увеличивается их количество. Во второй стадии — роста — будущие яйцеклетки увеличиваются в размерах иногда в сотни, тысячи и более раз. Размеры сперматозоидов увеличиваются незначительно. В следующей стадии — созревания — каждая половая клетка претерпевает мейоз, состоящий из двух последовательных делений — мейоза I и мейоза II. Удвоение ДНК и хромосом происходит только перед мейозом I. В результате мейоза образуются гаметы с гаплиидным числом хромосом. Таким образом, в отличие от митоза, при котором дочерние клетки получают диплоидный набор хромосом, в результате мейоза зрелые половые клетки имеют лишь одинарный, гаплоидный, набор хромосом. При этом в каждую дочернюю клетку попадает по одной хромосоме из каждой пары, присутствовавшей в родительской клетке. Мейоз, так же как и митоз, состоит из ряда фаз.

Фазы мейоза

 

Во время профазы I мейоза двойные хромосомы хорошо заметны в световой микроскоп. Каждая хромосома состоит из двух хроматид, соединенных между собой в области центромеры. Гомологичные хромосомы сближаются и конъюгируют, т. е, продольно тесно соединяются друг с другом (хроматида к хроматиде). При этом хроматиды часто перекручиваются или перекрещиваются. К концу профазы гомологичные хромосомы отталкиваются друг от друга. В местах перекреста хроматид происходят разрывы и обмены их участками. Это явление называется кроссинговером — перекрестом хромосом . Затем, как и в профазе митоза, растворяется ядерная оболочка, исчезает ядрышко, образуются нити веретена.

 

Перекрест хромосом в мейозе

В метафазе I хромосомы располагаются в экваториальной плоскости.

В анафазе 1 гомологичные хромосомы, каждая из которых состоит из двух хроматид, расходятся к противоположным полюсам клетки.

В телофазе из каждой пары гомологичных хромосом в дочерних клетках оказывается по одной. Число хромосом уменьшается в 2 раза, хромосомный набор становится гаплоидным. Однако каждая хромосома состоит из двух хроматид, т. е. по-прежнему содержит удвоенное количество ДНК. Поэтому во время интерфазы между первым и вторым делениями мейоза удвоения (редупликации) ДНК не происходит.

Второе мейотическое деление идет по типу митоза.

В анафазе 2 к полюсам расходятся хроматиды, которые и становятся дочерними хромосомами. Из каждой исходной клетки в результате мейоза образуется четыре клетки с гаплоидным набором хромосом.

По рассмотренной схеме мейоза идет сперматогенез — образование мужских половых клеток у животных и человека. В отличие от сперматогенеза, в результате овогенеза (формирования женских гамет) образуется не четыре равноценные клетки, а одна зрелая яйцеклетка и три маленькие клеточки, которые впоследствии исчезают. Таким образом, по сравнению с яйцеклетками сперматозоидов образуется во много раз больше. Это необходимо для обеспечения оплодотворения большего числа яйцеклеток и, следовательно, для сохранения вида.

 

Биологическое значение мейоза и оплодотворения

Сущность процесса оплодотворения состоит в слиянии сперматозоида с яйцеклеткой с образованием диплоидной клетки - зиготы.

Если бы в процессе мейоза не происходило уменьшение числа хромосом, то в каждом следующем поколении в результате оплодотворения число хромосом увеличивалось бы вдвое- Благодаря мейозу зрелые половые клетки получают гаплоидное число хромосом, а при оплодотворении восстанавливается характерное для данного вида диплоидное (2л) число хромосом.

В ходе мейоза происходит перекрест и обмен участками гомологичных хромосом. Кроме того, материнские и отцовские хромосомы случайно распределяются между гаметами (гомологичные хромосомы каждой пары расходятся в стороны случайным образом независимо от других пар). Все эти процессы обеспечивают большое разнообразие гамет и увеличивают наследственную изменчивость организмов, что имеет большое значение для эволюции.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


Информация о работе Митоз клетки