Автор работы: Пользователь скрыл имя, 29 Марта 2011 в 15:08, курсовая работа
Целью проекта является анализ закономерности изменения кадрового потенциала науки и оценка степени влияния факторов на него.
Для достижения поставленной цели необходимо решить следующие задачи:
- определить предмет и объект кадрового потенциала науки РФ (Калужской области);
- выявить сущность методов статистической сводки и группировки;
- рассмотреть методы изучения взаимосвязи между явлениями;
- проанализировать однородность изучаемой совокупности;
- оценить степень зависимости между признаками изучаемой совокупности с помощью корреляционно - регрессионного метода;
- выявить динамику результативного и факторных признаков кадрового потенциала науки РФ (Калужской области
Статистическая сводка – это научно-организованная обработка материалов наблюдения, включающая в себя систематизацию, группировку данных, составление таблиц, подсчет групповых и общих итогов, расчет производных показателей [1]. Она позволяет перейти к обобщающим показателям совокупности в целом и отдельных ее частей, осуществлять анализ и прогнозирование изучаемых процессов.
По технике или способу выполнения сводка может быть ручной либо механизированной (с помощью ЭВМ).
Если производится только подсчет общих итогов по изучаемой совокупности единиц наблюдения, то сводка называется простой.
Статистическая сводка проводится по определенной программе и плану. Программа сводки устанавливает этапы:
- выбор группировочных признаков;
- определение порядка
- разработка системы
- разработка макетов
План сводки содержит указания о последовательности и сроках выполнения отдельных частей сводки, ее исполнителях и о порядке изложения и предоставления результатов.
В
сводке статистического материала
отдельные единицы
Статистическая группировка – это процесс образования однородных групп на основе расчленения статистической совокупности или объединения изучаемых единиц в частные совокупности по существенным для них признакам, каждая из которых характеризуется системой статистических показателей. [1]
Метод группировок применяется для решения задач, возникающих в ходе научного статистического исследования:
Для решения этих задач применяют следующие виды группировок:
1)
Типологическая группировка –
это разделение качественно-
2)
Структурная группировка – это
разбиение изучаемой
3)
Аналитическая (факторная)
4)
Комбинированная группировка.
К правилам построения группировок относят:
n= 1+3,322 lgN (2)
i = R : n (3)
Вариация возникает в результате того, что индивидуальные значения признака складываются под совокупным влиянием разнообразных факторов (условий), которые по-разному сочетаются в каждом отдельном случае. Таким образом, величина каждого варианта объективна.
К показателям вариации относятся:
R= xmax - xmin (4)
Прямое:
;
(5)
Взвешенное:
; (6)
Простая дисперсия: (7)
Взвешенная дисперсия: (8)
(10)
Для характеристики среднего значения признака в вариационном ряду используются так называемые показатели центра распределения. К ним относятся средняя величина признака, мода и медиана.
Расчет средней величины признака в вариационном ряду осуществляется по формуле средней арифметической взвешенной:
,
где хi — варианты признака; fi —частоты.
Мода — значение признака, наиболее часто встречающееся в изучаемой совокупности. В дискретном ряду модой является вариант с наибольшей частотой. В интервальном вариационном ряду мода рассчитывается по формуле:
где - нижняя граница модального интервала;
- модальный интервал;
, , - частоты в модальном, предыдущем и следующем за модальным интервалах (соответственно).
Модальный интервал — это интервал, имеющий наибольшую частоту.
Медиана — вариант, расположенный в середине упорядоченного вариационного ряда, делящий его на две равные части, таким образом, что половина единиц совокупности имеют значения признака меньше, чем медиана, а половина — больше, чем медиана. В интервальном ряду медиана определяется по формуле:
где - нижняя граница медианного интервала;
- половина общего числа
- сумма наблюдений до начала медиального интервала;
- число наблюдений в медианном интервале.
Медианный
интервал — это интервал, в котором находится
порядковый номер медианы. Для его определения
необходимо подсчитать сумму накопленных
частот до числа, превышающего половину
объема совокупности.
Для исследования взаимосвязи между явлениями используются следующие методы: [1]
Корреляционная связь может возникать в различных формах:
Корреляционный
анализ имеет своей задачей
Величина коэффициента корреляции служит также оценкой соответствия уравнения регрессии выявленным причинно-следственным связям.
Регрессия может быть однофакторной (парной) и многофакторной (множественной).
Уравнение линейной множественной регрессии имеет вид:
(14)
где — расчетные значения результативного признака;
х1, х2,, , хn — факторные признаки;
— параметры модели (коэффициенты регрессии).
Для нахождения параметров линейной множественной регрессии необходимо решить систему уравнений:
Для
практического использования
Корреляционно-