Статистическое изучение основных фондов

Автор работы: Пользователь скрыл имя, 04 Июня 2013 в 21:46, контрольная работа

Описание работы

Имеются следующие выборочные данные (выборка 20%-ная, механическая) о стоимости основных производственных фондов и выпуске продукции по 30 однородным предприятиям одной из отраслей промышленности за год, млн.руб.
В проводимом статистическом исследовании эти банки выступают как единицы выборочной совокупности. Генеральную совокупность образуют все коммерческие банки региона. Анализируемыми признаками изучаемых единиц совокупности являются Среднегодовая стоимость основных производственных

Содержание работы

Задание для варианта №19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Выполнение задания 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 3
Выполнение задания 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Выполнение задания 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Выполнение задания 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Литература . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Файлы: 1 файл

Статистика.doc

— 932.00 Кб (Скачать файл)

Расчет общей дисперсии по формуле (10):

                                 млрд.руб.

 

Общая дисперсия  может быть также рассчитана по формуле

,

где – средняя из квадратов значений результативного признака,

      – квадрат средней величины значений результативного признака.

Для демонстрационного  примера                                                                                                       

 млрд.руб.

 

 

Тогда

 

 

Межгрупповая дисперсия измеряет систематическую  вариацию результативного признака, обусловленную влиянием признака-фактора Х (по которому произведена группировка). Воздействие фактора Х на результативный признак Y проявляется в отклонении групповых средних от общей средней . Показатель вычисляется по формуле

,                                                (13)

где     –групповые средние,

 – общая средняя,

–число единиц в j-ой группе,

k – число групп.

Для  расчета  межгрупповой  дисперсии строится  вспомогательная таблица 13 При этом используются  групповые средние значения из табл. 8 (графа 5).

Таблица 13

Вспомогательная таблица  для расчета межгрупповой дисперсии

Группы банков по размеру кредитных вложений,

млрд. руб.

Число банков,

Среднее значение

в группе

1

2

3

4

5

20-28

3

29

-11

363

28-36

6

35

-5

150

36-44

11

39

-1

11

44-52

8

46

6

288

52-60

2

53

13

338

Итого

30

   

1150


Расчет межгрупповой дисперсии по формуле (11):

δ²x=

1150

=38

30


 

 

Расчет эмпирического  коэффициента детерминации по формуле (9):

 

  

или 86%

                                    

Вывод. 86% вариации суммы прибыли банков обусловлено вариацией объема кредитных вложений, а 14% – влиянием прочих неучтенных факторов.

Эмпирическое корреляционное отношение оценивает тесноту связи между факторным и результативным признаками и вычисляется по формуле

                                                                     (14)

Значение показателя изменяются в пределах . Чем ближе значение к 1, тем теснее связь между признаками. Для качественной оценки тесноты связи на основе служит шкала Чэддока (табл. 14):

Таблица 14

Шкала Чэддока

h

0,1 – 0,3

0,3 – 0,5

0,5 – 0,7

0,7 – 0,9

0,9 – 0,99

Характеристика

силы связи

Слабая

Умеренная

Заметная

Тесная

Весьма тесная


Расчет эмпирического  корреляционного отношения  по формуле (14):

 

Вывод. Согласно шкале Чэддока связь между объемом кредитных вложений и суммой прибыли банков является весьма тесной.

3. Оценка статистической значимости коэффициента детерминации

.

Показатели  и рассчитаны для выборочной совокупности, т.е. на основе ограниченной информации об изучаемом явлении. Поскольку при формировании выборки на первичные данные могли  иметь воздействии какие-либо случайные факторы, то есть основание полагать, что и полученные характеристики связи  , несут в себе элемент случайности. Ввиду этого, необходимо проверить, насколько заключение о тесноте и силе связи, сделанное по выборке, будет правомерными и для генеральной совокупности, из которой была произведена выборка.

Проверка выборочных показателей на их неслучайность  осуществляется в статистике с помощью тестов на статистическую значимость (существенность) показателя. Для проверки значимости коэффициента детерминации  служит дисперсионный F-критерий Фишера, который рассчитывается по формуле

                                    ,

где  n – число единиц выборочной совокупности,

    m – количество групп,

       – межгрупповая дисперсия,

      – дисперсия j-ой группы (j=1,2,…,m),

       – средняя арифметическая групповых дисперсий.

Величина  рассчитывается, исходя из правила сложения дисперсий:

                                     ,

где – общая дисперсия.

Для проверки значимости показателя рассчитанное значение F-критерия Fрасч сравнивается с табличным Fтабл для принятого уровня значимости и параметров k1, k2, зависящих от величин n и m : k1=m-1, k2=n-m. Величина Fтабл для значений , k1, k2 определяется по таблице распределения Фишера, где приведены критические (предельно допустимые) величины F-критерия  для различных комбинаций  значений  , k1, k2. Уровень значимости в социально-экономических исследованиях обычно принимается равным 0,05 (что соответствует доверительной вероятности Р=0,95).

Если Fрасч>Fтабл , коэффициент детерминации признается статистически значимым, т.е. практически невероятно, что найденная оценка обусловлена только стечением случайных обстоятельств. В силу этого, выводы о тесноте связи изучаемых признаков,  сделанные на основе выборки, можно распространить на всю генеральную совокупность.

Если Fрасч<Fтабл, то показатель считается статистически незначимым и, следовательно, полученные оценки силы связи признаков относятся только к выборке, их нельзя распространить на генеральную совокупность.

Фрагмент таблицы Фишера критических величин F-критерия для значений =0,05; k1=3,4,5; k2=24-35 представлен ниже:

 

 

k2

k1

24

25

26

27

28

29

30

31

32

33

34

35

3

3,01

2,99

2,98

2,96

2,95

2,93

2,92

2,91

2,90

2,89

2,88

2,87

4

2,78

2,76

2,74

2,73

2,71

2,70

2,69

2,68

2,67

2,66

2,65

2,64

5

2,62

2,60

2,59

2,57

2,56

2,55

2,53

2,52

2,51

2,50

2,49

2,48


 

Расчет дисперсионного F-критерия Фишера для оценки =86%, полученной при =44, =33:

             Fрасч

Табличное значение F-критерия при = 0,05:

n

m

k1=m-1

k2=n-m

Fтабл ( ,4, 26)

30

5

4

25

2,76


 

Вывод: поскольку Fрасч>Fтабл, то величина коэффициента детерминации =86% признается значимой (неслучайной) с уровнем надежности 95% и, следовательно, найденные характеристики связи между признаками Объем кредитных вложений банков и Сумма прибыли банков правомерны не только для выборки, но и для всей генеральной совокупности банков.

Задание 3

По результатам выполнения Задания 1 с вероятностью 0,683 необходимо определить:

  1. ошибку выборки средней величины объема кредитных вложений банков и границы, в которых будет находиться генеральная средняя.
  2. ошибку   выборки   доли   банков   с   объемом   кредитных   вложений    44  млрд. руб. и выше, а также границы, в которых будет находиться генеральная доля.

Выполнение  Задания 3

Целью выполнения данного  Задания является определение для генеральной совокупности коммерческих банков региона границ, в которых будут находиться величина среднего объема кредитных вложений банков и доля банков с объемом кредитных вложений не менее 44 млрд. руб.

1. Определение  ошибки выборки для среднего  объема кредитных вложений банков  и границ, в которых будет находиться генеральная средняя

Применение выборочного  метода наблюдения всегда связано с установлением степени достоверности оценок показателей генеральной совокупности, полученных на основе значений показателей выборочной совокупности. Достоверность этих оценок зависит от репрезентативности выборки, т.е. от того, насколько полно и адекватно  представлены в выборке статистические свойства  генеральной совокупности. Как правило, генеральные и выборочные характеристики не совпадают, а отклоняются на некоторую величину ε, которую называют ошибкой выборки (ошибкой репрезентативности).

Значения признаков  единиц, отобранных из генеральной  совокупности в выборочную, всегда случайны, поэтому и статистические характеристики выборки случайны, следовательно, и ошибки выборки также случайны. Ввиду этого принято вычислять два вида ошибок - среднюю и предельную .

Средняя ошибка выборки - это среднее квадратическое отклонение всех возможных значений выборочной средней от генеральной средней, т.е. от своего математического ожидания M[ ].

Величина средней ошибки выборки рассчитывается дифференцированно (по различным формулам) в зависимости от вида и способа отбора единиц из генеральной совокупности в выборочную.

Для собственно-случайной  и механической выборки с бесповторным способом отбора средняя ошибка выборочной средней определяется по формуле

,                                                    (15)

где – общая дисперсия выборочных значений признаков,

       N – число единиц в генеральной совокупности,

        n – число единиц в выборочной совокупности.

Предельная  ошибка выборки определяет границы, в пределах которых будет находиться генеральная средняя:

,

                                       ,                                         (16)

где     – выборочная средняя,

          – генеральная средняя.

Границы задают доверительный интервал генеральной средней, т.е. случайную область значений, которая с вероятностью Р гарантированно содержит значение генеральной средней. Эту вероятность Р называют доверительной вероятностью или уровнем надёжности.

В экономических исследованиях  чаще всего используются доверительные  вероятности Р= 0.954, Р= 0.997, реже  Р= 0,683.

В математической статистике доказано, что предельная ошибка выборки   кратна средней ошибке µ с коэффициентом кратности t (называемым также коэффициентом доверия), который зависит от значения доверительной вероятности Р. Для предельной ошибки выборочной средней это теоретическое положение выражается формулой

                                                       (17)

Значения t вычислены заранее для различных доверительных вероятностей Р и протабулированы (таблицы функции Лапласа Ф). Для наиболее часто используемых уровней надежности Р значения t задаются следующим образом (табл. 15):

Таблица 15

Доверительная вероятность P

0,683

0,866

0,954

0,988

0,997

0,999

Значение t

1,0

1,5

2,0

2,5

3,0

3,5

Информация о работе Статистическое изучение основных фондов