Автор работы: Пользователь скрыл имя, 02 Декабря 2010 в 19:51, Не определен
Предметом данной работы являются экономико-статистические методы и актуальность их применения. В работе будут использованы несколько методов: метод статистических группировок, дисперсионный анализ, корреляционно-регрессионный анализ.
5. Подсчитаем число единиц в каждом интервале и запишем в виде таблицы (таблица 8)
Таблица 8 – интервальный ряд распределения хозяйств по урожайности зерновых
Группы хозяйств по урожайности зерновых, ц\га | Число хозяйств |
4,9–10 | 4 |
10–15,1 | 4 |
15,1–20,2 | 6 |
20,2–25,3 | 3 |
25,3–30,4 | 4 |
Итого | 21 |
Для
наглядности изобразим
Рисунок 1 – Гистограмма распределения хозяйств по урожайности зерновых
Для выявления характерных черт, свойственных ряду распределения единиц, используем следующие показатели.
1) для характеристики центральной тенденции распределения определим среднюю арифметическую, моду, медиану признака.
Средняя величина признака определяется по формуле средней арифметической взвешенной: , где - варианты; - средняя величина признака; - частоты распределения. В интервальных рядах в качестве вариантов ( ) используют серединные значения интервалов.
ц/га
Мода – наиболее часто встречающееся значение признака, определяемое по формуле: , где - нижняя граница модального интервала; - величина интервала; - разность между частотой модального и домодального интервала; - разность между частотой модального и послемодального интервала.
Медиана – значение признака, находящегося в центре ранжированного ряда распределения, определяемое по формуле: , где - нижняя граница медиального интервала; - величина интервала; - сумма частот распределения; - сумма частот домедиальных интервалов; - частота медиального интервала.
2)
для характеристики меры
Размах вариации составит: ц/га
Дисперсия составит:
Среднее квадратическое отклонение признака в ряду распределения составит: ц/га
Коэффициент вариации составит:
3) для характеристики формы распределения используем коэффициенты асимметрии ( ) и эксцесса ( ):
Т.к. >0, распределение имеет правостороннюю асимметрию, о которой также можно судить на основе следующего неравенства: < <
Т.к. <0, фактическое (эмпирическое) распределение является низковершинным по сравнению с нормальным распределением. Если же >0 распределение следует признать высоковершинным по сравнению с нормальным (при нормальном распределении =0).
Определим величину показателей вариации и характеристик форм распределения на основе предварительных расчетных данных, представленных в таблице 9.
Таблица
9- Расчетные данные для определения
показателей вариации, асимметрии и
эксцесса
Серединное значение интервала по урожайности, ц (xi) | Число хозяйств
( fi ) |
Отклонения
от | |||
( |
|||||
7,45 | 4 | -9,95 | 396,01 | -3940,30 | 39205,99 |
12,55 | 4 | -4,85 | 94,09 | -456,34 | 2213,25 |
17,65 | 6 | 0,25 | 0,38 | 0,10 | 0,03 |
22,75 | 3 | 5,35 | 85,87 | 459,40 | 2457,79 |
27,85 | 4 | 10,45 | 436,81 | 4564,66 | 47700,70 |
Итого | 21 | × | 1013,16 | 627,52 | 91577,76 |
Таким образом, средняя урожайность зерновых составила 17,4 ц\га при среднем квадратическом отклонении 6,9 ц\га. Так как коэффициент вариации больше 33%, совокупность единиц является неоднородной: V=39,9%.
Эмпирическое
распределение имеет
Для того чтобы определить, подчиняется ли исходное распределение закону нормального распределения, необходимо проверить статистическую гипотезу о существовании различия частот фактического и теоретического (нормального) распределения.
Для проверки этой гипотезы используем критерий Пирсона ( ), фактическое значение которого определяют по формуле: , где и - частоты фактического и теоретического распределения.
Теоретические
частоты для каждого интервала
определяют в следующей
1)
для каждого интервала
(результаты расчета значений t представлены в таблице 9).
2)
используя математическую
3)
определим теоретические
Таблица 10 – Расчет критерия Пирсона
Срединное значение интервала по урожайности, ц | Число хозяйств | ||||
табличное | - | ||||
7,45 | 4 | 1,43 | 0,1435 | 3 | 0,33 |
12,55 | 4 | 0,70 | 0,3123 | 5 | 0,20 |
17,65 | 6 | 0,04 | 0,3986 | 6 | 0,00 |
22,75 | 3 | 0,77 | 0,2966 | 5 | 0,80 |
27,85 | 4 | 1,50 | 0,1295 | 2 | 2,00 |
Итого | 21 | x | x | 21 | 3,33 |
4)
подсчитаем сумму
Таким образом, фактическое значение критерия составило:
По математической таблице «Распределение » определим критическое значение критерия при числе степеней свободы ( ), равном числу интервалов минус единица и выбранном уровне значимости (0,05).
При и
Поскольку фактическое значение критерия ( ) меньше табличного ( ), отклонение фактического распределения от теоретического следует признать несущественным.
Таким образом, средняя урожайность зерновых составила 17,4 ц\га при среднем квадратическом отклонении 6,9 ц\га. Так как коэффициент вариации больше 33%, совокупность единиц является неоднородной: V=39,9%.
Эмпирическое
распределение имеет правостороннюю
асимметрию, т.к.
<
<
и
>0 и является
низковершинным по сравнению с нормальным
распределением, т.к.
<0. При этом
отклонение фактического распределения
от нормального является несущественным.
Следовательно, исходную совокупность
единиц можно использовать для проведения
экономико-статистического исследования
при условии исключения из нее нетипичных
предприятий.
3.
Экономико-статистический
анализ взаимосвязей
между признаками изучаемого
явления
3.1.
Метод статистических
группировок
Статистическая группировка – разбиение (разделение) множества единиц изучаемой совокупности на группы по определенным, существенным для них признакам и характеристика этих групп через систему показателей. Для изучения взаимосвязей между отдельными признаками воспользуемся методом аналитических группировок.
Используем две группировки: затраты на 1 га посева и урожайность зерновых; урожайность зерновых и себестоимость 1 ц зерна.