Автор работы: Пользователь скрыл имя, 03 Декабря 2009 в 16:09, Не определен
В данной курсовой работе затрагивается тема экономических индексов. Поскольку объекты изучения индексов весьма разнообразны, то они широко применяются в экономической практике
it = t1/to
Для характеристики
iw= wi/wo = ∑ pq1/∑T1 : ∑ pqo/∑To
где p – сопоставимые цены на продукцию (обычно цены базисного периода).
Индивидуальный индекс стоимости продукции отражает, во сколько раз изменилась стоимость какого-либо товара в текущем периоде по сравнению с базисным, или сколько процентов составляет рост (снижение) стоимости товара, и определяется по формуле.
Индивидуальный индекс численности рабочих можно рассчитать следующим образом:
iT= T1/T0
Он показывает, во сколько раз изменилась численность рабочих в текущем периоде по сравнению с базисным или сколько процентов составляет рост (снижение) численности рабочих.
Общие
индексы рассчитывают для
2.2.1. Агрегатный индекс.
Основной формой общих индексов являются агрегатные индексы.
Достижение
в сложных статистических совокупностях
сопоставимости разнородных единиц
осуществляется введением в индексные
отношения специальных
В
качестве соизмерителей индексируемых
величин выступают тесно
Произведение каждой индексируемой величины на соизмеритель образует в индексном отношении определённые экономические категории.
Пример.
Товар | Ед.
изм. |
I
период |
II
период |
Индивидуальные индексы | |||||
цена за единицу
товара, руб.
|
кол-во
|
цена за единицу товара, руб. | кол-во,
|
цен | физич-го объёма
| ||||
А | т | 20 | 7 500 | 25 | 9500 | 1,25 | 1,27 | ||
Б | м | 30 | 2 000 | 30 | 2500 | 1,0 | 1,25 | ||
В | шт. | 15 | 1 000 | 10 | 1500 | 0,67 | 1,5 |
При определении по данным таблицы статистических индексов первый период принимается за базисный, в котором цена единицы товара принимается , а количество — .
Второй период принимается за текущий (или отчетный), в котором цена единицы товара обозначается , а количество — .
Индивидуальные индексы показывают, что в текущем периоде по сравнению с базисным цена на товар А повысилась на 25%, на товар Б осталась без изменения, а на товар В снизилась на 33%. Количество реализации товара А возросло на 27%, товара Б — на 25%, а товара В — на 50%.
При определении общего индекса цен в агрегатной форме в качестве соизмерителя индексируемых величин и могут приниматься данные о количестве реализации товаров в текущем периоде . При умножении на индексируемые величины в числителе индексного отношения образуется значение ,
сумма стоимости продажи товаров в текущем периоде по ценам того же текущего периода. В знаменателе индексного отношения образуется значение , т.е. сумма стоимости продажи товаров в текущем периоде по ценам базисного периода.
Агрегатная формула такого общего индекса цен имеет следующий вид:
= (1)
Расчёт агрегатного индекса цен по данной формуле предложил немецкий экономист Г. Пааше, поэтому он называется индексом Пааше.
Применяем
формулу для расчёта
числитель индексного отношения
=25 * 9 500 + 30 * 2 500 + 10 * 1 500 = 327 500 руб.
знаменатель индексного отношения
= 20 * 9 500 + 30 * 2 500 + 15 * 1 500 = 287 500 руб.
Полученные значения подставляем в формулу 1:
= или 113,9%
Применение
формулы 1 показывает, что по данному
ассортименту товаров в целом
цены повысились в среднем на 13,9%.
При
другом способе определения
В знаменателе индексного отношения образуется значение , т.е. сумма стоимости продажи товаров в базисном периоде по ценам того же базисного периода.
Агрегатная формула такого общего индекса имеет вид:
= (2)
Расчёт общего индекса цен по данной формуле предложил немецкий экономист Э. Ласпейрес, и получил название индекса Ласпейреса.
Применяем
формулу для расчёта
числитель индексного отношения
= 25 * 7 500 + 30 * 2 000 + 10 * 1000 = 257 500 руб.
знаменатель индексного отношения
= 20 * 7 500 + 30 * 2 000 + 15 * 1 000 = 225 000 руб.
Полученные значения подставляем в формулу 2:
= или 114,4%
Применение формулы 2 показывает, что по данному ассортименту товаров в целом цены повысились в среднем на 14,4%.
Таким
образом, выполненные по формулам 1
и 2 расчёты имеют разные показания
индексов цен. Это объясняется тем,
что индексы Пааше и Ласпейреса
характеризуют различные
Индекс Пааше характеризует влияние изменения цен на стоимость товаров, реализованных в отчётном периоде. Индекс Ласпейреса показывает влияние изменения цен на стоимость количества товаров, реализованных в базисном периоде.
Другим важным видом общих индексов, которые широко применяются в статистике, являются агрегатные индексы физического объёма товарной массы.
При
определении агрегатного
Агрегатная форма общего индекса имеет следующий вид:
= (3)
Поскольку, в числителе формулы 3 содержится сумма стоимости реализации товаров в текущем периоде по неизменным (базисным) ценам, а в знаменателе — сумма фактической стоимости товаров, реализованных в базисном периоде в тех же неизменных (базисных) ценах, то данный индекс является агрегатным индексом товарооборота в сопоставимых (базисных) ценах.
Используем формулу 3 для расчёта агрегатного индекса физического объёма реализации товаров по данным табл.1:
числитель индексного отношения
= 9 500 * 20 + 2 500 * 30 + 1 500 * 15 = 287 500 руб.
знаменатель индексного отношения
= 7 500 * 20 + 2 000 * 30 + 1 000 * 15 = 225 000 руб.
Полученные значения подставляем в формулу 3:
= или 127,8%
Применение формулы 3 показывает, что по данному ассортименту товаров в целом прирост физического объёма реализации в текущем периоде составил в среднем 27,8%.
Агрегатный индекс физического объёма товарооборота может определяться посредством использования в качестве соизмерителя индексируемых величин и цен текущего периода .
Агрегатная формула общего индекса будет иметь вид:
= (4)
числитель индексного отношения
= 9 500 * 25 + 2 500 * 30 + 1 500 * 10 = 327 500 руб.
знаменатель индексного отношения
= 7 500 * 25 + 2 000 * 30 + 1 000 * 10 = 257 500 руб.
Полученные значения подставляем в формулу 4:
= или 127,2%
Применение
формулы 4 показывает, что по данному
ассортименту товаров в целом
прирост физического объёма реализации
в текущем периоде составил в
среднем 27,2%.
Аналогичным образом производится расчёт индекса себестоимости, при этом сравниваются суммы затрат в производстве в отчётном периоде ( — числитель индекса) с суммой затрат в производстве на продукцию отчётного периода по себестоимости базисного периода ( — знаменатель).
Индексы с постоянными и переменными весами.
При изучении динамики коммерческой деятельности приходится производить индексные сопоставления более чем за два периода.
Поэтому индексные величины могут определяться как на постоянной, так и на переменной базах сравнения. При этом, если задача анализа состоит в получении характеристик изменения изучаемого явления во всех последующих периодах по сравнению с начальным, то вычисляются базисные индексы. Например, сопоставление объёма розничного товарооборота II, III и IV кварталов с I кварталом.
Информация о работе Экономические индексы и их использование в экономическом анализе