Лекции по "Программному обеспечению"

Автор работы: Пользователь скрыл имя, 05 Февраля 2011 в 17:27, курс лекций

Описание работы

В работе рассматриваются основные вопросы в виде лекций по предмету "Программное обеспечение".

Файлы: 16 файлов

Лекция_1.doc

— 130.50 Кб (Просмотреть файл, Скачать файл)

Лекция_2.doc

— 120.50 Кб (Просмотреть файл, Скачать файл)

Лекция_3.doc

— 140.00 Кб (Скачать файл)

Лекция  № 3 Поколения и классификация ЭВМ

  1. Поколения вычислительной техники

     Выделяют  пять поколений ЭВМ.

     Первое  поколение (1945—1954) характеризуется появлением техники на электронных лампах. Это эпоха становления вычислительной техники. Большинство машин первого поколения были экспериментальными устройствами и создавались с целью проверки тех или иных теоретических положений. Вес и размеры этих компьютеров были такими, что они нередко требовали отдельных зданий.

     Основоположниками компьютерной науки по праву считаются Клод Шеннон — создатель теории информации, Алан Тьюринг — математик, разработавший теорию программ и алгоритмов, и Джон фон Нейман — автор конструкции вычислительных устройств, которая до настоящего времени лежит в основе большинства компьютеров. В те же годы возникла еще одна новая наука, связанная с информатикой, — кибернетика — наука об управлении как одном из основных информационных процессов. Основателем кибернетики является американский математик Норберт Винер.

     Во  втором поколении (1955—1964) вместо электронных ламп использовались транзисторы, а в качестве устройств памяти стали применяться магнитные сердечники и барабаны — прототипы современных жестких дисков. Все это позволило сократить габариты и стоимость компьютеров, которые тогда впервые стали производиться на продажу.

     Но  главные достижения этой эпохи относятся  к области программ. Во втором поколении  впервые появилось то, что сегодня  называется операционной системой. Тогда  же были разработаны первые языки  высокого уровня — Фортран, Алгол, Кобол. Два этих важных усовершенствования позволили значительно упростить и ускорить написание программ для компьютеров.

     При этом расширялась сфера применения компьютеров. Теперь уже не только ученые могли рассчитывать на доступ к вычислительной технике, поскольку компьютеры нашли применение в планировании и управлении, а некоторые крупные фирмы даже начали компьютеризировать свою бухгалтерию, предвосхищая этот процесс на двадцать лет.

     В третьем поколении (1965—1974) впервые стали использоваться интегральные схемы — целые устройства и узлы из десятков и сотен транзисторов, выполненные на одном кристалле полупроводника (микросхемы). В то же время появилась полупроводниковая память, которая и до настоящего времени используется в персональных компьютерах в качестве оперативной.

     В те годы производство компьютеров приняло  промышленный размах. Фирма IBM первой реализовала серию полностью совместимых друг с другом компьютеров от самых маленьких, размером с небольшой шкаф (меньше тогда еще не делали), до самых мощных и дорогих моделей. Наиболее распространенным в те годы было семейство System/360 фирмы IBM, на основе которого в СССР была разработана серия ЕС ЭВМ. Еще в начале 1960-х гг. появились первые миникомпьютеры — маломощные компьютеры, доступные по цене небольшим фирмам или лабораториям. Мини-компьютеры были первым шагом на пути к персональным компьютерам, пробные образцы которых были выпущены только в середине 1970-х гг.

     Между тем количество элементов и соединений, умещающихся в одной микросхеме, постоянно росло, и в 1970-е гг. интегральные схемы содержали уже тысячи транзисторов.

     В 1971 г. фирма Intel выпустила первый микропроцессор, который предназначался для только появившихся настольных калькуляторов. Это изобретение произвело в следующем десятилетии настоящую революцию. Микропроцессор является главной составляющей частью современного персонального компьютера.

     На  рубеже 1960 —70-х гг. (1969) появилась  первая глобальная компьютерная сеть ARPA, прототип современной сети Интернет. В том же 1969 г. одновременно появились операционная система Unix и язык программирования С ("Си"), оказавшие огромное влияние на программный мир и до сих пор сохраняющие свое главенствующее положение.

     Четвертое поколение (1975 —1985) характеризуется небольшим количеством принципиальных новаций в компьютерной науке. Прогресс шел в основном по пути развития того, что уже изобретено и придумано, прежде всего, за счет повышения мощности и миниатюризации элементной базы и самих компьютеров.

     Самая главная новация четвертого поколения — это появление в начале 1980-х гг. персональных компьютеров. Благодаря им вычислительная техника становится по-настоящему массовой и общедоступной. Несмотря на то, что персональные и мини-компьютеры по-прежнему по вычислительной мощности отстают от солидных машин, большая часть новшеств, таких как графический пользовательский интерфейс, новые периферийные устройства, глобальные сети, связана с появлением и развитием именно этой техники.

     Большие компьютеры и суперкомпьютеры, конечно  же, продолжают развиваться. Но теперь они уже не доминируют в компьютерном мире, как было раньше.

     Некоторые характеристики вычислительной техники  четырех поколений приведены  в 

Характеристика Положение
первое второе третье четвёртое
Основной  элемент Электронная лампа Транзистор Интегральная  схема Большая интегральная схема
Количество  ЭВМ в мире, шт. Сотни Тысячи Десятки тысяч Миллионы
Размер  ЭВМ Большой Значительно меньший Десятки тысяч Микро ЭВМ
Быстродействие (условное) операций/с Несколько единиц Несколько десятков единиц Несколько тысяч  единиц Несколько десятков тысяч единиц
Носитель  информации Перфокарта, перфолента Магнитная лента Диск Гибкий диск

     Пятое поколение (1986 г. до настоящего времени) в значительной мере определяется результатами работы японского Комитета научных исследований в области ЭВМ, опубликованными в 1981г. Согласно этому проекту ЭВМ и вычислительные системы пятого поколения кроме высокой производительности и надежности при более низкой стоимости с помощью новейших технологий должны удовлетворять следующим качественно новым функциональным требованиям:

  • обеспечить простоту применения ЭВМ путем реализации систем ввода/вывода информации голосом, а также диалоговой обработки информации с использованием естественных языков;
  • обеспечить возможность обучаемости, ассоциативных построений и логических выводов;
  • упростить процесс создания программных средств путем автоматизации синтеза программ по спецификациям исходных требований на естественных языках;
  • улучшить основные характеристики и эксплуатационные качества вычислительной техники для удовлетворения различных социальных задач, улучшить соотношения затрат и результатов, быстродействия, легкости, компактности ЭВМ;
  • обеспечить разнообразие вычислительной техники, высокую адаптируемость к приложениям и надежность в эксплуатации.

     В настоящее время ведутся интенсивные  работы по созданию оптоэлектронных  ЭВМ с массовым параллелизмом  и нейронной структурой, представляющих собой распределенную сеть большого числа (десятки тысяч) несложных микропроцессоров, моделирующих архитектуру нейронных биологических систем.

  1. Классификация электронно-вычислительных машин

     ЭВМ можно классифицировать по ряду признаков:

  1. По принципу действия.
  2. По назначению ЭВМ.
  3. По размерам и функциональным возможностям.
 

     По  принципу действия ЭВМ:

  • АВМ – аналоговые вычислительные машины непрерывного действия, работают с информацией, представленной в непрерывной (аналоговой) форме, т.е. в виде непрерывного ряда значений какой-либо физической величины (чаще всего электрического напряжения);
  • ЦВМ – цифровые вычислительные машины дискретного действия, работают с информацией, представленной в дискретной (цифровой) форме;
  • ГВМ – гибридные вычислительные машины комбинированного действия, работают с информацией, представленной как в цифровой, так и аналоговой форме. ГВМ совмещают в себе достоинства АВМ и ЦВМ. Их целесообразно использовать для решения задач управления сложными быстродействующими техническими комплексами.

     По  назначению ЭВМ:

  • универсальные ЭВМ предназначены для решения самых различных инженерно-технических задач: экономических, математических, информационных и других, отличающихся сложностью алгоритмов и большим объемом обрабатываемых данных;
  • проблемно-ориентированные ЭВМ служат для решения более узкого круга задач, связанных, как правило, с управлением технологическими процессами;
  • специализированные ЭВМ используются для решения узкого круга задач или реализации строго определенной группы функций.

     По  размерам и функциональным:

  • сверхмалые (микро ЭВМ) обязаны своим появлением изобретению микропроцессора, наличие которого первоначально служило определяющим признаком микро ЭВМ, хотя сейчас микропроцессоры используются во всех без исключения классах ЭВМ;
  • малые (мини-ЭВМ) используются чаще всего для управления технологическими процессами;
  • большие ЭВМ чаще всего называют мэйнфреймами (mainframe). Основные направления эффективного применения мэйнфреймов – это решение научно-технических задач, работа в вычислительных системах с пакетной обработкой информации, работа с большими базами данных, управление вычислительными сетями и их ресурсами;
  • сверхбольшие (суперЭВМ) – мощные многопроцессорные вычислительные машины быстродействием десятки миллиардов операций в секунду и объемом оперативной памяти десятки Гбайт.
  1. Принципы  строения и функционирования ЭВМ Джона фон  Неймана

     Большинство современных ЭВМ функционирует  на основе принципов, сформулированных в 1945 г. американским ученым венгерского  происхождения Джоном фон Нейманом.

     1. Принцип двоичного кодирования. Согласно этому, вся информация, поступающая в ЭВМ, кодируется с помощью двоичных символов (сигналов).

     2. Принцип программного управления. Компьютерная программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности.

     3. Принцип однородности памяти. Программы и данные хранятся в одной и той же памяти, поэтому ЭВМ не различает, что хранится в данной ячейке памяти — число, текст или команда. Над командами можно выполнять такие же действия, как и над данными.

     4. Принцип адресности. Структурно основная память состоит из пронумерованных ячеек, любая из которых доступна процессору в любой момент времени.

     Согласно  фон Нейману, ЭВМ состоит из следующих  основных блоков:

     1) устройство ввода/вывода информации;

     2) память ЭВМ;

     3) процессор, включающее устройство  управления (УУ) и арифметико-логическое  устройство (АЛУ).

     В ходе работы ЭВМ информация через  устройства ввода попадает в память. Процессор извлекает из памяти обрабатываемую информацию, работает с ней и помещает в нее результаты обработки. Полученные результаты через устройства вывода сообщаются человеку.

     Память  ЭВМ состоит из двух видов памяти: внутренней (оперативной) и внешней (долговременной).

     Оперативная память – это электронное устройство, которое хранит информацию, пока питается электроэнергией. Внешняя память – это различные магнитные носители (ленты, диски), оптические диски.

     За  прошедшие десятилетия процесс  совершенствования ЭВМ шел в  рамках приведенной обобщенной структуры.

  1. Классификация персональных компьютеров

     Как указывалось выше, персональный компьютер (ПК) представляет собой универсальную  однопользовательскую микро ЭВМ.

Лекция_4.doc

— 374.00 Кб (Просмотреть файл, Скачать файл)

Лекция_5.doc

— 160.00 Кб (Просмотреть файл, Скачать файл)

Лекция_6.doc

— 116.50 Кб (Просмотреть файл, Скачать файл)

Лекция_7.doc

— 85.50 Кб (Просмотреть файл, Скачать файл)

Лекция_8.doc

— 42.50 Кб (Просмотреть файл, Скачать файл)

Лекция_9.doc

— 36.00 Кб (Просмотреть файл, Скачать файл)

Лекция_10.doc

— 101.50 Кб (Просмотреть файл, Скачать файл)

Лекция_11.doc

— 61.50 Кб (Просмотреть файл, Скачать файл)

Лекция_12.doc

— 48.50 Кб (Просмотреть файл, Скачать файл)

Лекция_13.doc

— 67.50 Кб (Просмотреть файл, Скачать файл)

Лекция_14.doc

— 81.00 Кб (Просмотреть файл, Скачать файл)

Лекция_15.doc

— 64.50 Кб (Просмотреть файл, Скачать файл)

Лекция_18.doc

— 318.50 Кб (Просмотреть файл, Скачать файл)

Информация о работе Лекции по "Программному обеспечению"