Дидактические игры на уроках математики

Автор работы: Пользователь скрыл имя, 07 Октября 2015 в 01:03, курсовая работа

Описание работы

Проблема исследования: как использовать дидактические игры для активизации познавательной деятельности учащихся.
Исходя из данной проблемы, мы ставим цель исследования: выявить эффективность использования дидактических игр в активизации познавательной деятельности учащихся на уроках математики.
Объект исследования: процесс обучения математике учащихся.
Предмет исследования: роль использования дидактических игр в активизации познавательной деятельности учащихся на уроках математики.

Содержание работы

ВВЕДЕНИЕ………………………………………………………….…………..3
Глава 1. ДИДАКТИЧЕСКИЕ ИГРЫ В НАЧАЛЬНОМ КУРСЕ МАТЕМАТИКИ………………………………………………………………..6
1.1.Сущность и содержание. Понятие игры. Виды игр………….……..6
1.2. Дидактические игры в обучении математике учащихся, осваивающих программу начального общего образования………………….10
1.3. Применение дидактических игр на уроках математики на уровне начального общего образования……………………………………..…………19
Выводы по первой главе………………………………………………….27
Глава2. ОПЫТНО-ЭКСПЕРЕМЕНТАЛЬНАЯ РАБОТА ПО ИСПОЛЬЗОВАНИЮ ДИДАКТИЧЕСКИХ ИГР В ОБУЧЕНИИ МАТЕМАТИКЕ………………………………………………………………...29
2.1. Состояние исследований по использованию дидактических игр на уроках математики……………………………………………………………....29
2.2. Исследование работы по использованию дидактических игр для активизации познавательной деятельности учащихся на уроках математики……………………………………………………………………….32
2.3. Опытно-экспериментальная работа по использованию дидактических игр на уроках математики на начальной ступени общего образования …………………………………………………………..…………36
Выводы по второй главе…………………………………………….. .….43
ЗАКЛЮЧЕНИЕ…………………………………….…………………………..44
Список использованной литературы……………………

Файлы: 1 файл

дидактичекие игры.doc

— 214.50 Кб (Скачать файл)

Формы проведения ролевых игр могут быть самыми разными: это и воображаемые путешествия, и дискуссии на основе распределения ролей, и пресс-конференции, и уроки-суды и т.д.

Методика разработки и проведения ролевых игр состоит из этапов: подготовительного, игрового, заключительного и этапа анализа результатов игры.

На первом этапе рассматриваются организационные вопросы: распределение ролей; выбор жюри или экспертной группы; формирование игровых групп; ознакомление с обязанностями.

Игровой этап характеризуется включением в проблему и осознанием проблемной ситуации в группах и между группами. Внутригрупповой аспект: индивидуальное понимание проблемы; дискуссия в группе; выявление позиций; принятие решения. Межгрупповой: заслушивание сообщений групп, оценка решения.

На заключительном этапе вырабатываются решения по проблеме, заслушивается сообщение экспертной группы, выбирается наиболее удачное решение.

При анализе результатов ролевой игры определяется степень активности участников, уровень знаний и умений, вырабатываются рекомендации по совершенствованию игры.

 

1.2 Дидактические игры в обучении учащихся математике

 

Какое же значение имеет игра? В процессе игры у детей вырабатывается привычка сосредотачиваться, мыслить самостоятельно, развивается внимание, стремление к знаниям. Увлекшись, дети не замечают, что учатся: познают, запоминают новое, ориентируются в необычных ситуациях, пополняют запас представлений, понятий, развивают фантазию. Даже самые пассивные из детей включаются в игру с огромным желанием, прилагают все усилия, чтобы не подвести товарищей по игре. Для активизации познавательной деятельности младших школьников на уроках применяются различные игровые моменты в начале, в середине, в конце урока. Для проверки домашнего задания необязательно опрашивать устно детей каждый урок, это можно сделать различными способами с помощью загадок, ребусов, кроссвордов.

Дидактическая игра - средство активизации познавательной деятельности.

Одним из важнейших факторов развития их интереса к учению является понимание детьми необходимости того или иного изучаемого материала. Для развития познавательного интереса к изучаемому материалу, большое значение имеет методика преподавания данного материала.

Дидактическая игра - одно из эффективных средств развития интереса к учебному предмету. Она вызывает у детей живой интерес к процессу познания, активизирует их познавательную деятельность и помогает легче усвоить учебный материал.

Игра только внешне кажется развлечением, в действительности она требует серьезной предварительной подготовки со стороны учителя и учащихся. В процессе игры от детей требуется выдержка, большое умственное напряжение, проявление самостоятельности. Но игра всегда приносит удовлетворение и радость и не нужно бояться, что она нанесет ущерб научности. Сделав материал доступным, интересным, игра создает богатые возможности для выявления у учащихся общих знаний, понятий, установлений межпредметных связей. Кроме того, она способствует сплочению детского коллектива, формированию у учащихся взаимного уважения и понимания, влияет на отношения учителя и ученика, делая их более доброжелательными. Но надо предостеречь начинающих учителей: злоупотребление игрой в учебном процессе, несмотря на активность детей, может привести к пробелам в их знаниях.

Дидактическая игра имеет свою устойчивую структуру, которая отличаете от другой деятельности. Основными структурными компонентами дидактической игры являются: игровой замысел, правила, игровые действия, познавательное содержание или дидактические задачи, оборудование, результат игры.

В отличие от игр вообще дидактическая игра обладает существенным признаком - наличием чётко поставленной цели обучения и соответствующего ей педагогического результата, которые могут быть обоснованы, выделены в явном виде и характеризуются учебно-познавательной направленностью.

Каждая дидактическая игра имеет правила, которые определяют порядок действий и поведение учащихся в процессе игры, способствуют созданию на уроке рабочей обстановки. Поэтому правила дидактических игр должны разрабатываться с учётом цели урока и индивидуальных возможностей учащихся. Этим создаются условия для проявления самостоятельности, настойчивости, мыслительной активности, для возможности появления у каждого ученика чувства удовлетворённости, успеха.

Кроме того, правила игры воспитывают умение управлять своим поведением, подчиняться требованиям коллектива.

Учитель, как руководитель игры, направляет её в нужное дидактическое русло, при необходимости активизирует её ход разнообразными приёмами, поддерживает интерес к игре, подбадривает отстающих.

Основой дидактической игры, которая пронизывает собой её структурные элементы, является познавательное содержание.

Оборудование дидактической игры в значительной мере включает в себя оборудование урока. Сюда также относятся различные средства наглядности: таблицы, модели, а также дидактические раздаточные материалы, флажки, которыми награждаются команды-победители.

Дидактическая игра имеет определённый результат, который является финалом игры, придаёт игре законченность. Он выступает, прежде всего, в форме решения поставленной учебной задачи и даёт школьникам моральное и умственное удовлетворение. Для учителя результат игры всегда является показателем уровня достижений учащихся или в усвоении знаний, могут или в их применении.

Дидактическая задача.

Для выбора дидактической игры необходимо знать уровень подготовленности учащихся, так как в играх они должны оперировать уже имеющимися знаниями и представлениями.

Определяя дидактическую задачу, надо, прежде всего, иметь в виду, какие знания, представления детей о природе, об окружающих предметах, о социальных явлениях) должны усваиваться, закрепляться детьми, какие умственные операции в связи с этим должны развиваться, какие качества личности в связи с этим можно формировать средствами данной игры (честность, скромность, наблюдательность, настойчивость и др.).

Например, в известной всем игре "Магазин игрушек" дидактическую задачу можно сформулировать так: "Закрепить знания детей об игрушках, их свойствах, назначении; развивать связную речь, умение определять существенные признаки предметов; воспитывать наблюдательность, вежливость, активность". Такая дидактическая задача поможет учителю организовать игру: подобрать игрушки, разные по назначению, по материалу, внешнему виду; дать образец описания игрушки, вежливого обращения к продавцу и т.д.

В каждой дидактической игре своя обучающая задача, что отличает одну игру от другой. При определении дидактической задачи следует избегать повторений в ее содержании, трафаретных фраз ("воспитывать внимание, мышление, память и др.). Как правило, эти задачи решаются в каждой игре, но в одних играх надо больше внимания уделять, развитию памяти, в других - мышления, в третьих - внимания. Воспитатель заранее должен знать и соответственно определять дидактическую задачу. Так игру "Что изменилось?" использовать для упражнений в запоминании, "Магазин игрушек" - для развития мышления, "Отгадай что задумали" - наблюдательности, внимания.

Все структурные элементы дидактической игры взаимосвязаны между собой и отсутствие основных из них, разрушает игру. Без игрового замысла и игровых действий, без организующих игру правил дидактическая игра или невозможна, или теряет свою специфическую форму, превращается в выполнение указаний, упражнений. Поэтому при подготовке к уроку, содержащему дидактическую игру, необходимо составить краткую характеристику хода игры (сценарий), указать временные рамки игры, учесть уровень знаний и возрастные особенности учащихся, реализовать межпредметные связи.

Сочетание всех этих элементов игры и их взаимодействие повышают организованность игры. Её эффективность, приводят к желаемому результату.

Ценность дидактических игр заключается в том, что в процессе игры дети в значительной мере самостоятельно приобретают новые знания, активно помогают друг другу в этом.

При подборе и разработке игр мы исходили из основных закономерностей обучения. Назовем главную из них. "Обучение происходит только при активной деятельности учащихся. Чем разностороннее обеспечиваемая учителем интенсивность деятельности учащихся с предметом усвоения, тем выше качество усвоения на уровне, зависящем от характера организуемой деятельности - репродуктивной или творческой".

Учитывая эту закономерность, мы разработали и отобрали игры с учетом разнообразных видов деятельности ученика. По характеру познавательной деятельности их можно отнести к следующим группам:

Игры, требующие от детей исполнительской деятельности. С помощью этих игр дети выполняют действия по образцу. Например, составляют узор по образцу и другие.

Игры, в ходе которых дети выполняют воспроизводящую деятельность. К этой группе относится большое число игр, направленных на формирование вычислительных навыков. Приведем пример игры.

Определи курс движения самолета.

Учитель обращается к детям: "Летчик-командир придумал для вас задание. Он наметил курс движения самолета из одного города в другие. Самолет должен лететь над городами в указанном порядке от меньшего числа (номера) к большему номеру. Номер каждого города зашифрован (записан) примером. Чтобы расшифровать номера городов, надо решить правильно примеры. Далее надо показать линиями, как двигался самолет от одного города к другому, третьему и т.д. Покажите и расскажите, в каком направлении двигался самолет. Я буду выполняют роль летчика-командира, а вы - роль летчиков-курсантов (учеников)".

Игровое действие выполняется поэтапно в соответствии с заданием.

Сначала дети расшифровывают номера городов (решают примеры).

Далее дети называют номера городов по порядку от меньшего числа к большему.

Потом они поочередно показывают линиями путь движения самолета.

Затем дети по цепочке рассказывают, в каком направлении двигался самолет.

На доске учащиеся записывают ответы примеров и показывают мелом путь движения самолета (можно перемещать рисунок самолета).

На доске учащиеся записывают ответы примеров и показывают мелом путь движения самолета (можно перемещать рисунок самолета от одного примера к другому).

Покажем пример такой записи.

3 + 4 = 7 6 + 4 = 10

5 + 3 = 8

5 + 4 = 9

9 - 4 = 5 8 - 4 = 4

10 - 4 = 6 10 - 7 = 3

10 - 8 =2

8 - 7 = 1

3). Игры, в которых запрограммирована  контролирующая деятельность учащихся.

Например, игра "Контролеры".

Учитель распределяет детей на две команды. От каждой команды вызывается к доске по 1 контролеру. Они следят за правильностью ответов: один - за первой командой, другой - за второй командой.

По сигналу учителя (движению руки) ученики первой команды делают несколько ритмичных наклонов влево и вправо и считают про себя. По сигналу учителя - хлопку они называют хором число выполненных наклонов (например,

5). Ученики второй команды по  сигналу учителя дополняют число  наклонов первой команды до  заданного числа и ведут счет  про себя (например, 6 - прибавил 1, 7 - прибавил 2, 8 - прибавил 3). Затем они  называют число выполненных ими  наклонов. По числу наклонов, выполненных учениками первой и второй команды, называется состав числа. Учитель говорит: "8 - это …", ученики продолжают: "5 и 3". Контролеры показывают зеленые круги, если они согласны с ответом.

Если допущена ошибка, упражнение повторяется.

Потом учитель предлагает детям второй команды по сигналу учителя (движению руки) сделать несколько приседаний, а ученики первой команды дополняют число приседаний до заданного числа. Называется состав числа.

Контролеры подтверждают или опровергают названный состав числа.

Аналогично анализируется состав числа на основе хлопков, выполненных учениками двух команд. Выигрывает та команда, которая не допустит ни одной ошибки или сделает меньшее число ошибок.

Контролеры подтверждают или опровергают названный состав числа.

4) Игры, с помощью которых дети  осуществляют преобразующую деятельность. Например, игра "Числа-перебежчики".

Учитель делит класс на три команды (по рядам). Сначала он вызывает пять учеников из первой команды и выдает им карточки с цифрами и знаками действий. Дети по заданию учителя составляют пример на сложение вида 2+8=10. Учитель предлагает "числам" (ученикам) перебежать так, чтобы получился другой пример на сложение с этими числами. Дети составляют другой "живой" пример на сложение, например 8+2=10.

Аналогично, перебегая на другие места и меняя знаки действий, дети составляют другие примеры вида 10 = 2 + 8, 10 - 2 = 8, 10 - 2 = 8.

Все примеры, составленные детьми, учитель записывает на доске. На основе сравнения первой пары примеров дети делают вывод о переместительном свойстве сложения. Затем учитель выдает карточки с цифрами и знаками действий пяти ученикам другой команды, они составляют цепочку аналогичных примеров.

Информация о работе Дидактические игры на уроках математики