Автор работы: Пользователь скрыл имя, 04 Ноября 2009 в 16:40, Не определен
Цель работы описать in vivo работу ГГС
Молекула соматолиберина является самой крупной среди либеринов, она состоит из 15 аминокислотных остатков; самая маленькая молекула - трипептид - у тиреолиберина. Молекулы тропинов, образующихся в гипофизе, содержат от 13 до 198 аминокислотных остатков.
Регуляция деятельности гипофиза и гипоталамуса, кроме сигналов, идущих. «сверху-вниз», осуществляется гормонами «исполнительных» жёлез. Эти «обратные» сигналы поступают в гипоталамус и затем передаются в гипофиз, что приводит к изменению секреции соответствующих тропинов. После удаления или атрофии эндокринной железы Стимулируется секреция соответствующего тропного гормона; при гиперфункции железы секреция соответствующего тропина подавляется.
Обратные связи не только позволяют регулировать концентрацию гормонов в крови, но и участвуют в дифференцировке гипоталамуса в онтогенезе. Образование половых· гормонов в женском - организме происходит циклически, что Объясняется циклической секрецией гонадотропных гормонов. Синтез этих гормонов контролируется гипоталамусом, образующим релизинг-фактор этих тропинов (гонадолиберин). Если самке пересадить гипофиз самца, то пересаженный гипофиз начинает функционировать циклично. Половая дифференцировка гипоталамуса происходит под действием андрогенов. Если самца лишить половых желез, продуцирующих андрогены, то гипоталамус будет дифференцироваться по женскому типу.
В железах внутренней секреции иннервированы, как правило, только сосуды, а эндокринные клетки изменяют свою биосинтетическую и секреторную активность лишь под действием метаболитов, кофакторов и гормонов, причем не только гипофизарных. Так, ангиотензин 11 стимулирует синтез и секрецию альдостерона. Отметим также, что некоторые гормоны гипоталамуса и гипофиза могут образовываться не только в этих тканях. Например - соматостатин (гормон гипоталамуса, ингибирующий образование и секрецию гормона роста) обнаружен также в поджелудочной железе где он подавляет секрецию инсулина и глюкагона.
Большинство нервных и гуморальных путей регуляции сходится на уровне гипоталамуса и благодаря этому в организме образуется единая нейроэндокринная регуляторная система. К клеткам гипоталамуса подходят аксоны нейронов, расположенных в коре больших полушарий и подкорковых образованиях. Эти аксоны секретируют различные нейромедиаторы, оказывающие на секреторную активность гипоталамуса как активирующее, так и тормозное влияние. ( Т Алейникова 2006).
Поступающие из мозга нервные импульсы гипоталамус «превращает» в эндокринные стимулы, которые могут быть усилены или ослаблены в зависимости от гуморальных сигналов, поступающих в гипоталамус от желез и тканей, подчиненных ему.
Тропины, образующиеся в гипофизе, не только регулируют деятельность подчиненных желез, но и выполняют самостоятельные эндокринные функции. Например, пролактин оказывает лактогенное действие, а также тормозит процессы дифференцировки клеток, повышает чувствительность половых желез к гонадотропинам ,стимулирует родительский инстинкт. Кортикотропин является не только стимулятором стерондогенеза, но и активатором липолиза в жировой
ткани, а также важнейшим участником процесса превращения в мозге кратковременной памяти в долговременную. Гормон роста может стимулировать активность иммунной системы, обмен липидов, сахаров и т.д.
В задней доле гипофиза (нейрогипофиз) депонируются антидиуретический гормон (вазопрессин) и окситоцин. Первый вызывает задержку воды в организме и повышает тонус сосудов, второй стимулирует сокращение матки при родах и секрецию молока.
Оба гормона синтезируются в гипоталамусе, затем транспортируются по аксонам в заднюю долю гипофиза, где депонируются и потом секретируются в кровь.
Характер процессов, протекающих в ЦНС, во многом определяется состоянием эндокринной регуляции. Так, андрогены и эстрогены формируют половой инстинкт, многие поведенческие реакции. Очевидно, что нейроны, точно так же как и другие клетки нашего организма, находятся под контролем гуморальной системы регуляции. Нервная система, эволюционно более поздняя, имеет как управляющие, так и подчиненные связи с эндокринной системой. Эти две регуляторные системы дополняют друг друга, образуют функционально единый механизм, что обеспечивает высокую эффективность нейрогуморальной регуляции, ставит ее во главе систем, согласующих все процессы жизнедеятельности в многоклеточном организме.
О важной
роли прямого поступления к гипофизу
продуктов нейросекреции
В гипоталамусе образуются, кроме того, вещества, угнетающие секрецию аденогипофизом некоторых гормонов. В частности таким веществом является фактор, тормозящий образование пролактина (пролактостатин) и некоторые другие.
Выделение высвобождающих факторов гипоталамусом осуществляется под влиянием нервных импульсов, а также вследствие изменения содержания в крови некоторых гормонов (по типу обратной связи). Так, образование кортикотропинвысвобождающего фактора происходит в результате возбуждения ЦНС под влиянием чрезвычайных раздражителей, вызывающих состояние напряжения (стресс), а также при воздействии на гипоталамус адреналина, выделяемого в увеличенных количествах при опасных для организма ситуациях и эмоциональном напряжении.( Козлов В 2001).
Механизм обратной связи, с помощью которого уровень гормонов надпочечника и половых желез в крови регулирует интенсивность выделения адренокортикотропного и гонадотропных гормонов гипофиза, осуществляется через ядра гипоталамической области. Действие гормонов половых желез непосредственно на клетки передней доли гипофиза не вызывает угнетения выработки гонадотропинов; в то же время действие гормонов этих желез на гипоталамическую область обусловливает указанный эффект. Последний наблюдается лишь в том случае, когда не нарушены связи гипофиза с гипоталамусом; он исчезает, если эти связи нарушаются. В отличие от этого избыточное содержание тироксина в крови, например при его введении, не угнетает образования тиреотропинвысвобождающего фактора клетками гипоталамуса, но блокирует действие этого вещества на аденогипофиз, вследствие чего уменьшается выделение тиротропина.
Задняя доля гипофиза (нейрогипофиз) имеет прямую нервную связь с ядрами гипоталамуса. Образование гормонов задней доли гипофиза происходит в основном в ядрах гипоталамуса в результате процессов нейросекреции, (вазопрессин, по-видимому, секретируется в супраоптическом ядре, окситоцин - в паравентрикулярном ядре гипоталамуса). По аксонам нервных клеток эти гормоны поступают в заднюю долю гипофиза.
Приведенные факты свидетельствуют о тесной связи гипоталамуса и гипофиза, которые представляют собой единую систему регуляции вегетативных функций организма, осуществляемую как благодаря выделению соответствующих гормонов гипофиза, т. е. гуморальным путем, так и непосредственно через вегетативную нервную систему, высшим центром которой является гипоталамическая область (Воробьева Е 1988).
Внутренняя секреция гипофиза, регулирующего функции ряда других эндокринных желез (половых, надпочечника, щитовидной), в свою очередь находится в зависимости от функционирования этих желез. Так, недостаток в крови андрогенов и эстрогенов, глюкокортикоидов и тироксина стимулирует продукцию соответственно гонадотропного, адренокортикотропного и тиротропного гормонов гипофиза. Наоборот, избыток гормонов половых желез, надпочечников и щитовидной железы угнетает продукцию соответствующих тропных гормонов гипофиза. Таким образом, гипофиз включен в систему нейрогуморальной регуляции, работающей по принципу обратной связи, автоматически поддерживающей продукцию гормонов соответствующих желез на необходимом уровне.
Регуляция
по принципу отрицательной обратной
связи, в которой участвуют медиальный
гипоталамус, гипофиз и эндокринные железы,
действует даже в отсутствие влияний со
стороны ЦНС. Так, эта регуляция сохраняется
после полного отделения медиальной области
гипоталамуса от остальных отделов ЦНС.
Роль ЦНС заключается в приспособлении
этой регуляции к внутренним и внешним
потребностям организма. Так, при чрезвычайных
требованиях к организму во время стресса
секреция кортизола корой надпочечников
возрастает, в результате того, что активность
нейронов медиальной области гипоталамуса,
секретирующих АКТГ-РГ, увеличивается,
что ведет к усиленному выделению этого
рилизинг-гормона в срединном возвышении(Б.
Ф. Березов 2004).
3.2. Центральная регуляция гипоталамо-гипофизарной эндокринной системы.
Осуществляется преимущественно центрами преоптической области, лимбической системы (например, гиппокампом и миндалиной) и среднего мозга. Влияние этих центров, как правило, переключается через латеральную область гипоталамуса.
Возможно, к этим центрам поступает также по принципу обратной связи информация о содержании эндокринных гормонов в плазме крови. Нейроны, входящие в состав этих эндокринных систем, способны специфически реагировать на гормоны эндокринных желез и накапливать их.
Примером влияния ЦНС на эндокринную систему служат циркадные ритмы высвобождения АКТГ регуляция выброса гормонов яичников в ходе менструального цикла, изменение секреции кортизола при стрессе и увеличение скорости обменных процессов при длительных холодовых воздействиях, наступающее в результате повышенного выделения тироксина. (Б. И. Ткаченко,1997).
В
тесном взаимодействии нервных эндокринных
структур гипоталамуса можно убедиться
на примере связи нейронов гипофизотропной
зоны. На нейрон, секретирующий какой-либо
рилизинг-гормон, могут оказывать влияние
афферентные нейроны лимбической системы
(миндалины гиппокампа, преоптической
области и передней части гипоталамуса).
Двигательные отростки этого нейрона
идут к самым разным отделам головного
мозга. Такие нейроны обладают свойствами
саморегуляции по принципу возвратного
торможения. Во всех двигательных отростках
подобных нейронов медиатором, очевидно,
служит рилизинг-гормон. Таким образом,
эти клетки гипофизотропной зоны являются,
с одной стороны, конечными интегрирующими
нейронами, а с другой эндокринными гормон-продуцирующими
клетками.
3.3. Гипоталамус и сердечно-сосудистая система
За
механизмы регуляции
Механизмы приспособления гемодинамики при физической работе представляют значительный теоретический и практический интерес. При физической нагрузке повышается сердечный выброс (главным образом в результате увеличения частоты сокращений сердца) и одновременно возрастает кровоток в скелетных мышцах. В то же время кровоток через кожу и органы брюшной полости снижается. Эти приспособительные циркуляторные реакции возникают практически одновременно с началом работы. Они инициируются в центральной нервной системе в гипоталамусе. У собаки при электрическом раздражении латеральной области гипоталамуса на уровне мамиллярных тел возникают точно такие же вегетативные реакции, как и при беге на тредбане. (Н.А.Агаджанян,2005)
У
животных в состоянии наркоза
электрическое раздражение
3.4. Гипоталамо-гипофизарный аппарат и поведение.
Электрическое раздражение маленьких участков гипоталамуса с помощью микроэлектродов сопровождается возникновением у животных типичных поведенческих реакций. Эти реакции почти столь же разнообразны, как и естественные видоспецифические типы поведения конкретного животного. Важнейшие из таких реакций - это оборонительное поведение и бегство, пищeвoe поведение (потребление пищи и воды), половое поведение и терморегуляторные реакции. Все эти поведенческие комплексы обеспечивают выживание особи и вида, поэтому их можно назвать гомеостатическими процессами в широком смысле слова. В состав каждого из этих комплексов входят соматомоторный, вегетативный и гормональный компоненты. (Т.В.Алейникова 2007).
При
локальном электрическом
Информация о работе Гипоталамо-гипофизарная регуляция функций организма в онтогенезе