Автор работы: Пользователь скрыл имя, 08 Декабря 2010 в 18:11, курсовая работа
Изучение в курсе математики начальной школы величин и их измерений имеет большое значение в плане развития младших школьников. Это обусловлено тем, что через понятие величины описываются реальные свойства предметов и явлений, происходит познание окружающей действительности; знакомство с зависимостями между величинами помогает создать у детей целостные представления об окружающем мире; изучение процесса измерения величин способствует приобретению практических умений и навыков необходимых человеку в его повседневной деятельности. Кроме того знания и умения, связанные с величинами и полученные в начальной школе, являются основой для дальнейшего изучения математики.
Введение
Понятие величины и её измерения в начальном курсе математики
Длина отрезка и её измерение
Площадь фигуры и её измерение
Масса и её измерение
Время и его измерение
Объем и его измерение
Современные подходы к изучению величин в начальном курсе математик
Заключение
Список литературы
Конспект урока
Измерение
площади состоит в сравнении
площади данной фигуры с площадью
единичного квадрата e. Результатом этого
сравнения является такое число x,
что S(F)=x e .Число x называют численным
значением площади при выбранной единице
площади.
Масса и её измерение.
Масса - одна из основных физических величин. Понятие массы тела тесно связано с понятием веса-силы, с которой тело притягивается Землёй. Поэтому вес тела зависит не только от самого тела. Например, он различен на разных широтах: на полюсе тело весит на 0,5 % больше, чем на экваторе. Однако при своей изменчивости вес обладает особенностью: отношение весов двух тел в любых условиях остаётся неизменным. При измерении веса тела путём сравнения его с весом другого выявляется новое свойство тел, которое называется массой. Представим, что на одну из чашек рычажных весов положили какое-нибудь тело, а на другую чашку положили второе тело b. При этом возможны случаи:
1) Вторая чашка весов опустилась, а первая поднялась так, что они оказались в результате на одном уровне. В этом случае говорят, что весы находятся в равновесии, а тела а и b имеют равные массы.
2) Вторая чашка весов так и осталась выше первой. В этом случае говорят, что масса тела а больше массы тела b.
3) Вторая чашка опустилась, а первая поднялась и стоит выше второй. В этом случае говорят, что масса тела а меньше тела b.
С
математической точки зрения масса
- это такая положительная
1)
Масса одинакова у тел,
2)
Масса складывается, когда тела
соединяются вместе: масса нескольких
тел, вместе взятых равна
Измерение массы производится с помощью весов. Происходит это следующим образом. Выбирают тело e, масса которого принимается за единицу. Предполагается, что можно взять и доли этой массы. Например, если за единицу массы взят килограмм, то в процессе измерения можно использовать такую его долю, как грамм: 1г= 0,01кг.
На одну чашку весов кладут тело, массу тела кого того измеряют, а на другую – тела, выбранные в качестве единицы массы, то есть гири. Этих гирь должно быть столько, чтобы они уравновесили первую чашку весов. В результате взвешивания получается численное значение массы данного тела при выбранной единице массы. Это значение приближённое. Например, если масса тела равна 5 кг 350 г, то число 5350следует рассматривать как значение массы данного тела ( при единице массы – грамм). Для численных значений массы справедливы все утверждения, сформулированные для длины, то есть сравнение масс, действия над ними сводятся к сравнению и действиям над численными значениями масс (при одной и той же единице массы).
Основная единица массы - килограмм. Из этой основной единицы образуются другие единицы массы: грамм, тонна и другие.
Промежутки времени и их измерение.
Понятие времени более сложное, чем понятие длины и массы. В обыденной жизни время - это то, что отделяет одно событие от другого. В математике и физике время рассматривают как скалярную величину,
потому что промежутки времени обладают свойствами, похожими на свойства длины, площади, массы.
Промежутки времени можно сравнивать. Например, на один и тот же путь пешеход затратит больше времени, чем велосипедист.
Промежутки времени можно складывать. Так, лекция в институте длится столько же времени, сколько два урока в школе.
Промежутки времени измеряют. Но процесс измерения времени отличается от измерения длины, площади или массы. Для измерения длины можно многократно использовать линейку, перемещая её с точки на точку. Промежуток времени, принятый за единицу, может быть использован лишь один раз. Поэтому единицей времени должен быть регулярно повторяющийся процесс. Такой единицей в Международной системе единиц названа секунда. Наряду с секундой используются и другие единицы времени: минута, час, сутки, год, неделя, месяц, век. Такие единицы, как год и сутки, были взяты из природы, а час, минута, секунда придуманы человеком.
Год - это время обращения Земли вокруг Солнца. Сутки - это время обращения Земли вокруг своей оси. Год состоит приблизительно из 365 суток. Но год жизни людей складывается из целого числа суток. Поэтому вместо того, чтобы к каждому году прибавлять 6 часов, прибавляют целые сутки к каждому четвёртому году. Этот год состоит из 366 дней и называется високосным.
В Древней Руси неделя называлась седмицей, а воскресенье - днём недельным (когда нет дел) или просто неделей, т.е. днём отдыха. Названия следующих пяти дней недели указывают, сколько дней прошло после воскресенья. Понедельник - сразу после неделя, вторник - второй день, среда - середина, четвёртые и пятые сутки соответственно четверг и пятница, суббота - конец дел.
Месяц не очень определённая единица времени, он может состоять из тридцати одного дня, из тридцати и двадцати восьми, двадцати девяти в високосные годы (дней). Но существует эта единица времени с древних времён и связана с движением Луны вокруг Земли. Один оборот вокруг
Земли Луна делает примерно за 29,5 суток, и за год она совершает примерно 12 оборотов. Эти данные послужили основой для создания древних календарей, а результатом их многовекового усовершенствования является тот календарь, которым мы пользуемся и сейчас.
Так как Луна совершает 12 оборотов вокруг Земли, люди стали считать полнее число оборотов (то есть 22) за год, то есть год – 12 месяцев.
Современное деление суток на 24 часа также восходит к глубокой древности, оно было введено в Древнем Египте. Минута и секунда появились в Древнем Вавилоне, а в том, что в часе 60 минут, а в минуте 60 секунд, сказывается влияние шестидесятеричной системы счисления,
изобретённой
вавилонскими учёными.
Объём и его измерение.
Понятие объёма определяется так же, как понятие площади. Но при рассмотрение понятия площадь, мы рассматривали многоугольные фигуры, а при рассмотрении понятия объём мы будем рассматривать многогранные Фигуры.
Объёмом фигуры называется неотрицательная величина, определённая для каждой Фигуры так, что:
1/равные фигуры имеют один и тот же объём;
2/если фигура составлена из конечного числа фигур, то её объём равен сумме их объёмов.
Условимся объём фигуры F обозначать V(F).
Чтобы измерить объем фигуры, нужно иметь единицу объёма. Как правило, за единицу объёма принимают объём куба с гранью, равной единичному отрезку e, то есть отрезку, выбранному в качестве единицы длины.
Если измерение площади сводилось к сравнению площади данной фигуры с площадью единичного квадрата e , то, аналогично, измерение объёма данной фигуры состоит в сравнении его с объёмом единичного куба е3 ( рис.б ). Результатом этого сравнения является такое число x, .что V(F)=х е.Число х называют численным значением объёма при выбранной единице объёма.
Так.
если единицей объёма является 1 см, то
объём фигуры, приведённой на рисунке
7, равен 4 см.
Современные подходы к изучению величин в начальном курсе математики.
В
начальных классах
Величины рассматриваются в тесной связи с изучением натуральных чисел и дробей; обучение измерении связывается с изучением счёта; измерительные и графические действия над величинами являются наглядными средствами и используются при решении задач. При формировании представлений о каждой из названных величин целесообразно ориентироваться на определённые этапы, в которых нашли отражение: математическая трактовка понятия величина, взаимосвязь данного понятия с изучением других вопросов начального курса математики, а так же психологические особенности младших школьников.
Н. Б. Истомина, преподаватель математики и автор одной из альтернативных программ, выделила 8 этапов изучения величин:
1-й этап: выяснение и уточнение представлений школьников о данной величине (обращение к опыту ребёнка).
2-й этап: сравнение однородных величин (визуально, с помощью ощущений, наложением, приложением, путём использования различных мерок).
3-й этап: знакомство с единицей данной величины и с измерительным прибором.
4-й этап: формирование измерительных умений и навыков.
5-й этап: сложение и вычитание однородных величин, выраженных в единицах одного наименования.
6-й
этап: знакомство с новыми единицами
величин в тесной связи с изучением нумерации
и сложения чисел. Перевод однородных
величин, выраженных в единицах одного
наименования, в величины, выраженные
в единицах двух наименований, и наоборот.
7-й этап: сложение и вычитание величин, выраженных в единицах двух наименований.
8-й
этап: умножение и деление величин
на число.
В программах развивающего обучения предусмотрено рассмотрение основных величин, их свойств и отношений между ними с тем, чтобы показать, что числа, их свойства и действия, производимые над ними, выступают в качестве частных случаев уже известных общих закономерностей величин. Структура данного курса математики определяется рассмотрением последовательности понятий: ВЕЛИЧИНА –> ЧИСЛО
Рассмотрим подробнее методику изучения длины, площади, массы, времени, объёма.
Методика изучения длины и её измерения.
В традиционной начальной школе изучение величин начинается с длины предметов. Первые представления о длине как о свойстве предметов у детей возникает задолго до школы. С первых дней обучения в школе ставится задача уточнить пространственные понятия детей. Важным шагом в формировании данного понятия является знакомство с прямей линией и отрезком как «носителем» линейной протяжённости, лишенным, по существу, других свойств.
Сначала учащиеся сравнивают предметы по длине не измеряя их. Делают они это наложением (приложением) и визуально («на глаз»).Например, учащимся предлагается рассмотреть рисунки и ответить на вопросы: «Какой поезд длиннее, с зелёными вагонами или с красными вагонами? Какой поезд короче?»(М1М «1» стр.39, 1988г.)
Информация о работе Величины, понятие, методика преподавания