Величины, понятие, методика преподавания

Автор работы: Пользователь скрыл имя, 08 Декабря 2010 в 18:11, курсовая работа

Описание работы

Изучение в курсе математики начальной школы величин и их измерений имеет большое значение в плане развития младших школьников. Это обусловлено тем, что через понятие величины описываются реальные свойства предметов и явлений, происходит познание окружающей действительности; знакомство с зависимостями между величинами помогает создать у детей целостные представления об окружающем мире; изучение процесса измерения величин способствует приобретению практических умений и навыков необходимых человеку в его повседневной деятельности. Кроме того знания и умения, связанные с величинами и полученные в начальной школе, являются основой для дальнейшего изучения математики.

Содержание работы

Введение
Понятие величины и её измерения в начальном курсе математики
Длина отрезка и её измерение
Площадь фигуры и её измерение
Масса и её измерение
Время и его измерение
Объем и его измерение
Современные подходы к изучению величин в начальном курсе математик
Заключение
Список литературы
Конспект урока

Файлы: 1 файл

ВЕЛИЧИНЫ КОМАРОВА.doc

— 163.00 Кб (Скачать файл)
 

Содержание

Введение……………………………………………………………………. 3с.
Понятие величины и её измерения в начальном  курсе математики……. 4с.
Длина отрезка и её измерение…………………………………………….. 6с.
Площадь фигуры и её измерение…………………………………………. 6с.
Масса и её измерение……………………………………………………… 7с.
Время и его измерение…………………………………………………….. 8с.
Объем и его измерение……………………………….……………………. 9с.
Современные подходы к изучению величин в  начальном курсе математики…………………………………………………………………. 10с.
Заключение……………………………………………………………….. 18с.
Список  литературы…………………………………………………… 19с.
Конспект  урока…………………………………………………………….. 20с.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Введение. 

      Изучение  в курсе математики начальной  школы величин и их измерений  имеет большое значение в плане  развития младших школьников. Это обусловлено тем, что через понятие величины описываются реальные свойства предметов и явлений, происходит познание окружающей действительности; знакомство с зависимостями между величинами помогает создать у детей целостные представления об окружающем мире; изучение процесса измерения величин способствует приобретению практических умений и навыков необходимых человеку в его повседневной деятельности. Кроме того знания и умения, связанные с величинами и полученные в начальной школе, являются основой для дальнейшего изучения математики.

      По  традиционной программе в конце  третьего (четвёртого) класса дети должны: - знать таблицы единиц величин, принятые обозначения этих единиц и уметь  применять эти знания в практике измерения и при решении задач, - знать взаимосвязь между такими величинами, как цена, количество, стоимость товара; скорость, время, расстояние, - уметь применять эти знания к решению текстовых задач, - уметь вычислять периметр и площадь прямоугольника (квадрата).

      Однако, результат обучения показывает, что дети недостаточно усваивают материал, связанный с величинами: не различают величину и единицу величины, допускают ошибки при сравнении величин, выраженных в единицах двух наименований, плохо овладевают измерительными навыками. Это связано с организацией изучения данной темы. В учебниках по традиционной программе недостаточно заданий, направленных на: выяснение и уточнение имеющихся у школьников представлений об изучаемой величине, сравнение однородных величин, формирование измерительных умений и навыков, сложение и вычитание величин, выраженных в единицах разных наименований. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Понятие величины и её измерения  в начальном курсе  математики.

 

       Длина, площадь, масса, время, объём - величины. Первоначальное знакомство с ними происходит в начальной школе, где величина наряду с числом является ведущим понятием.

     ВЕЛИЧИНА - это особое свойство реальных объектов или явлений, и особенность заключается  в том, что это свойство можно  измерить, то есть назвать количество величины, которые    выражают одно и тоже свойство объектов, называются величинами одного рода или однородными величинами. Например, длина стола и дли на комнаты - это однородные величины. Величины - длина, площадь, масса и другие обладают рядом свойств.

     1)Любые две величины одного рода сравнимы: они либо равны, либо одна меньше (больше) другой. То есть, для величин одного рода имеют место отношения «равно», «меньше», «больше» и для любых величин и справедливо одно и только одно из отношений: Например, мы говорим, что длина гипотенузы прямоугольного треугольника больше, чем любой катет данного треугольника; масса лимона меньше, чем масса   арбуза;   длины   противоположных   сторон прямоугольника равны.

      2)Величины одного рода можно складывать, в результате сложения получится величина того же рода. Т.е. для любых двух величин а и b однозначно определяется величина a+b, её называют суммой величин а и b. Например, если a-длина отрезка AB, b - длина отрезка ВС (рис.1), то длина отрезка АС, есть сумма длин отрезков АВ и ВС;

. 3)Величину умножают на действительное число, получая в результате величину того же рода. Тогда для любой величины а и любого неотрицательного числа x существует единственная величина b= x  а,  величину b называют произведением величины а   на число x. Например,  если  a - длину отрезка АВ умножить на

x= 2, то получим длину нового отрезка АС .(Рис.2)

     4) Величины данного рода вычитают, определяя разность величин через  сумму:

разностью величин а и b называется такая величина с, что а=b+c. Например, если а -  длина отрезка АС, b -  длина отрезка AB, то длина отрезка ВС  есть разность длин отрезков и АС и АВ.

     5) Величины одного рода делят,  определяя частное через произведение  величины на число; частным величин а и b-называется такое неотрицательное действительное число х, что     а= х b. Чаще это число - называют отношением величин а и b и записывают в таком виде: a/b = х. Например, отношение длины отрезка АС к длине отрезка АВ равно 2.(Рис №2).

6) Отношение  «меньше» для однородных величин транзитивно: если А<В и В<С, то А<С. Так, если площадь треугольника F1 меньше площади треугольника F2 площадь треугольника F2 меньше площади треугольника F3, то площадь треугольника F1  меньше площади треугольника F3. Величины, как свойства объектов, обладают ещё одной особенностью - их можно оценивать количественно. Для этого величину нужно измерить. Измерение - заключается в сравнении данной величины с некоторой величиной того же рода, принятой за единицу.

       Величины, которые вполне определяются  одним численным значением, называются скалярными величинами. Такими, к примеру, являются длина, площадь, объём, масса и другие. Кроме скалярных величин, в математике рассматривают ещё векторные величины. Для определения векторной величины необходимо указать не только её численное значение, но и направление. Векторными величинами являются сила, ускорение, напряжённость электрического поля и другие.

       В начальной школе рассматриваются  только скалярные величины,  причём  такие,  численные  значения  которых положительны, то есть  положительные скалярные величины.

 Измерение  величин позволяет свести сравнение  их к сравнению   чисел 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Длина отрезка и её измерение.

Длиной  отрезка называется положительная  величина, определённая для каждого  отрезка так что:

     1/ равные отрезки имеют разные длины;

     2/ если отрезок состоит из конечного числа отрезков, то его длина равна сумме длин этих отрезков.

       Рассмотрим процесс измерения  длин отрезков. Из множества отрезков  выбирают какой-нибудь отрезок  e и принимают его за единицу длины. На отрезке а от одного из его концов откладывают последовательно отрезки равные e, до тех пор, пока это возможно. Если отрезки, равные e отложились n раз и конец последнего совпал с концом отрезка e, то говорят, что значение длины отрезка а есть натуральное число n, и пишут:  а = ne. Если же отрезки, равные e, отложились n раз и остался ещё остаток, меньший e, то на нём откладывают отрезки равные e =1/10e. Если они отложились точно n  раз, то тогда а=n, n e и значение длины отрезка а есть конечная десятичная дробь. Если же отрезок e отложился n  раз и остался ещё остаток, меньший e , то на нём откладывают отрезки, равные e =1/100e. Если представить этот процесс бесконечно продолженным, то получим, что значение длины отрезка а   есть бесконечная десятичная дробь.

     Итак, при выбранной единице,   длина  любого отрезка выражается действительным числом. Верно и обратное; если дано положительное действительное число  n, n , n , ... то взяв его приближение с определённой  

     точностью и проведя построения, отражённые в записи этого числа, получим отрезок, численное значение длины которого, есть дробь: n ,n ,n …

     Площадь фигуры и её измерение.

      Понятие о площади фигуры имеет любой  человек: мы говорим о площади  комнаты, площади земельного участка, о площади поверхности, которую надо покрасить, и так далее. При этом мы понимаем, что если земельные участки одинаковы, то площади их равны; что у большего участка площадь больше; что площадь квартиры слагается из площади комнат и площади других её помещений.

     Это обыденное представление о площади используется при её определении в геометрии, где говорят о площади фигуры. Но геометрические фигуры устроены по-разному, и поэтому когда говорят о площади, выделяют особый класс фигур. Например, рассматривают площади многоугольников и других ограниченных выпуклых фигур, или площадь круга, или площадь поверхности тел вращения и так далее. В начальном курсе математики рассматриваются только площади многоугольников и ограниченных выпуклых плоских фигур. Такая фигура может быть составлена из других. Например, фигура F, (рис.4), составлена из фигур F1, F2, F3. Говоря, что фигура составлена (состоит) из фигур F1, F2,…,Fn, имеют в виду, что она является их объединением и любые две данные фигуры не имеют общих внутренних точек. Площадью фигуры называется неотрицательная величина, определённая для каждой фигуры так, что:

     I/ равные фигуры имеют равные  площади;

     2/ если фигура составлена из  конечного числа фигур, то её площадь равна сумме их площадей. Если сравнить данное определение с определением длины отрезка, то увидим, что площадь характеризуется теми же свойствами, что и длина, но заданы они на разных множествах: длина - на множестве отрезков, а площадь - на множестве плоских фигур. Площадь фигуры F обозначать S(F). Чтобы измерить площадь фигуры, нужно иметь единицу площади. Как правило, за единицу площади принимают площадь квадрата со стороной, равной единичному отрезку e, то есть отрезку, выбранному в качестве единицы длины. Площадь квадрата со стороной e обозначают e . Например, если длина стороны единичного квадрата m, то его площадь m .

Информация о работе Величины, понятие, методика преподавания