Автор работы: Пользователь скрыл имя, 14 Августа 2011 в 20:40, контрольная работа
Огромную роль в умственном воспитании и в развитии интеллекта ребёнка играет математическое развитие. Математика обладает уникальным развивающим эффектом. Ее изучение способствует развитию памяти, речи, воображения, эмоций; формирует настойчивость, терпение, творческий потенциал личности. Математика – один из наиболее трудных учебных предметов.
Введение……………………………..………………………………………2
1. Содержание математических представлений………………....…….6
2. Исторический обзор развития математических представлений у детей дошкольного возраста............................................................................11
3. Реализация идеи интеграции логико-математического и речевого развития дошкольников....................................................................................16
4. Требования к художественным произведениям для детей дошкольного возраста …....…………………………………………..………18
Методические рекомендации к использованию произведений устного народного творчества в математическом развитии дошкольников…..............................................................................................…24
Заключение………………..……………………………………………...25
Список литературы……………………………………………………….27
-
научное обоснование
-
определение содержания
- совершенствование материала по формированию математических представлений в программе детского сада;
-
разработка и внедрение в
-
реализация преемственности в
формировании основных
-
разработка содержания
-
разработка на научной основе
методических рекомендаций
Щербакова Е.И. среди задач по формированию элементарных математических знаний и последующего математического развития детей выделяет главные, а именно:
Эти задачи чаще всего решаются воспитателем одновременно на каждом занятии по математике, а также в процессе организации разных видов самостоятельной детской деятельности. Многочисленные психолого-педагогические исследования и передовой педагогический опыт работы в дошкольных учреждениях показывают, что только правильно организованная детская деятельность и систематическое обучение обеспечивают своевременное математическое развитие дошкольника [25, стр. 5].
Теоретическую базу методики формирования элементарных математических представлений у дошкольников составляют не только общие, принципиальные, исходные положения философии, педагогики, психологии, математики и других наук. Как система педагогических знаний она имеет и свою собственную теорию, и свои источники. К последним относятся:
-
научные исследования и
-
программно-инструктивные
- методическая литература (статьи в специализированных журналах, например, в "Дошкольном воспитании", пособия для воспитателей детского сада и родителей, сборники игр и упражнения, методические рекомендации и т.д.);
-
передовой коллективный и
Методика
формирования элементарных математических
представлений у детей
В
настоящее время благодаря
Ведущим и определяющим среди них является цель, так как она ведёт к выполнению социального заказа общества детским садом, подготавливая детей к изучению основ наук (в том числе и математики) в школе.
Дошкольники активно осваивают счёт, пользуются числами, осуществляют элементарные вычисления по наглядной основе и устно, осваивают простейшие временные и пространственные отношения, преобразуют предметы различных форм и величин. Ребёнок, не осознавая того, практически включается в простую математическую деятельность, осваивая при этом свойства, отношения, связи и зависимости на предметах и числовом уровне.
Необходимость современных требований вызвана высоким уровнем современной школы к математической подготовке детей в детском саду в связи с переходом на обучение в школе с шести лет.
Математическая подготовка детей к школе предполагает не только усвоение детьми определённых знаний, формирование у них количественных пространственных и временных представлений. Наиболее важным является развитие у дошкольников мыслительных способностей, умение решать различные задачи. Воспитатель должен знать, не только как обучать дошкольников, но и то, чему он их обучает, то есть ему должна быть ясна математическая сущность тех представлений, которые он формирует у детей. Широкое использование устного народного творчества так же важно для пробуждения у дошкольников интереса к математическим знаниям, совершенствования познавательной деятельности, общего умственного развития.
Таким
образом, математическое развитие рассматривается
как следствие обучения математическим
знаниям. В какой-то мере это, безусловно,
наблюдается в некоторых
2. Исторический обзор развития математических представлений
у детей дошкольного возраста.
Предоснову
становления методики развития математических
представлений у детей
В 1574 году первопечатник Иван Федоров в созданной им печатной учебной книге — «Букваре» предложил упражнения для обучения детей счёту. В устном народном творчестве тех лет также отражены взгляды педагогов и родителей на математическое развитие ребёнка.
В XVIII-XIX вв. вопросы содержания и методов обучения детей дошкольного возраста арифметике и развития представлений о размерах, мерах измерения, времени и пространстве нашли отражение в передовых педагогических системах воспитания, разработанных Я.А. Коменским, И.Г. Песталоцци, К.Д. Ушинским, Л.Н. Толстым и т.д. Педагоги той эпохи под влиянием требований развивающейся практики пришли к выводу о необходимости подготовки детей к усвоению математики в школе. Ими высказывались определённые предложения о содержании и методах обучения детей, в основном в условиях семьи. [16, стр. 17]
Чешский мыслитель-гуманист и педагог Я.А.Коменский (1562-1670) в программу по воспитанию дошкольников включил арифметику: усвоение счёта в пределах первых двух десятков (для 4-6-летних детей), определение большего и меньшего из них, сравнение предметов и геометрических фигур, изучение общеупотребляемых мер. Передовые идеи в обучении детей дошкольной арифметике также высказывал русский педагог К.Д. Ушинский (1824-1872). Писатель и педагог Л.Н.Толстой издал в 1872 году «Азбуку», одна из частей которой называлась «Счёт». Л.Н. Толстой предлагал учить детей счёту «вперёд» и «назад» в пределах сотни и нумерации, основываясь при этом на детском практическом опыте, приобретённом в игре.
Методы развития у детей представлений о числе и форме нашли своё отражение и дальнейшее развитие в системах сенсорного воспитания немецкого педагога Ф. Фределя (1782-1852), итальянского педагога М. Монтессори (1870-1952) и др. В целом обучение математике по системе Марии Монтессори начиналось с сенсорного впечатления, затем осуществлялся переход к пониманию символа, что делало математику привлекательной и доступной даже для 3-4-летних детей.
Итак, передовые педагоги прошлого, русские и зарубежные, признали роль и необходимость первичных математических знаний в развитии и воспитании дошкольников, выделяли при этом счёт в качестве средства умственного развития и настоятельно рекомендовали обучать детей ему как можно раньше, примерно с 3-х лет.
Становление методики развития элементарных математических представлений в XIX- начале XX вв. также происходило под непосредственным воздействием идей реформирования школьных методов обучения арифметике. Особо выделялись два направления: с одним из них связан так называемый метод изучения чисел, или монографический метод, а с другим — метод изучения действий, который назвали вычислительным. Оба метода сыграли положительную роль в дальнейшем развитии методики, которая вобрала в себя приёмы, упражнения, дидактические средства одного и другого метода.
В конце XIX — начале XX вв. были широко распространены идеи обучения математике без принуждения и дидактичности, но без лишней занимательности. Математики, психологи, педагоги разрабатывали математические игры и развлечения, составляли сборники задач на смекалку, преобразование фигур, решение головоломок. Широко применялись в обучении и развитии детей математические игры, в ходе которых был необходим подробный и чёткий анализ игровых действий, возможность проявить смекалку в ходе поисков, самостоятельность.
В 20-50-е гг. XX в. не наблюдалось особых различий в подходах к отбору содержания и методов обучения. Предполагалось развивать способность ориентироваться в пространстве и времени, различать формы и величины, числа и действия над ними, представления о мерах и делении целого на части.
Разработка психолого-педагогических вопросов методики развития математических представлений у детей дошкольного возраста в 60-70-е гг. XX столетия строилась на основе методологических позиций советской психологии и педагогики. Изучались закономерности становления представлений о числе, развития счётной и вычислительной деятельности. В 80-е гг. начали обсуждаться пути совершенствования, как содержания, так и методов обучения детей дошкольного возраста математике. В начале 90-х гг. XX в. наметилось несколько основных научных направлений.
Согласно первому направлению, содержание обучения и развития, методы и приёмы конструировались на основе идеи преимущественного развития у дошкольников интеллектуально-творческих способностей (Ж.Пиаже, Д.Б. Эльконин, В.В.Давыдов, А.А. Столяр и др.)
Второе положение базировалось на преимущественном развитии у детей сенсорных процессов и способностей (А.В. Запорожец, Л.А. Венгер, Н.Б. Венгер и др.)
Третье теоретическое положение, на котором базируется математическое развитие дошкольников, основано на идеях первоначального (до освоения чисел) овладения детьми способами практического сравнения величин через выделение в предметах общих признаков — массы, длины, ширины, высоты (П.Я.Гальперин, Л.С.Георгиев, В.В.Давыдов, А.М. Леушина и др.)
Четвёртое положение основывается на идее становления и развития определённого стиля мышления в процессе освоения детьми свойств и отношений. (А.А. Столяр, Р.Ф. Соболевский, Т.М. Чеботаревская, Е.А.Носова др.) [9, стр. 29]
В монографии Г. С. Виноградова «Русский детский фольклор. Игровые прелюдии» предпринята классификация детского фольклора, в частности считалок, в основу которых положен словарный состав. Такая классификация, вполне обоснована, и до сих пор не было предложено ничего лучшего. Г. С. Виноградов отнес к считалкам-числовкам стихи, содержащие счетные слова (Раз, два, три, четыре, Мы стояли на квартире), «заумные» (искаженные) счетные слова (Первинчики-другинчики, Летели голубинчики) и эквиваленты числительных (Анзы, дванзы, три, калынзы – слово «калынзы» здесь является эквивалентом числительного «четыре»). К заумным Виноградов отнес считалки, целиком или частично состоящие из бессмысленных слов; к считалкам-заменкам – стихи, не содержащие ни заумных, ни счетных слов. Считалки, жеребьевки, песенки и приговоры, входящие в игры, и составляют игровой фольклор [3, стр. 5].
Информация о работе Содержание математического развития детей дошкольного возраста