Шпаргалка по "Высшей математике"

Автор работы: Пользователь скрыл имя, 01 Сентября 2011 в 11:58, шпаргалка

Описание работы

Работа содержит ответы на вопросы по дисциплине "Высшей математике".

Файлы: 1 файл

Математика_шпора.doc

— 656.00 Кб (Скачать файл)

Наиболее часто  используются в экономике следующие  функции:

1. Функция полезности (функция предпочтений) - в широком смысле зависимость полезности, т.е. результата, эффекта некоторого действия от уровня (интенсивности) этого действия.

2. Производственная функция - зависимость результата производственной деятельности от обусловивших его факторов.

3. Функция выпуска (частный вид производственной функции) - зависимость объема производства от наличия или потребления ресурсов.

4. Функция издержек (частный вид производственной функции) - зависимость издержек производства от объема продукции.

5. Функции спроса, потребления и предложения - зависимость объема спроса, потребления или предложения на отдельные товары или услуги от различных факторов (например, цены, дохода и т.п.).

 

18. ФУНКЦИИ В ЭКОНОМИКЕ

В экономических  исследованиях для обозначения  производных часто пользуются специфической  терминологией. Например, если f(x) есть производственная функция, выражающая зависимость выпуска какой-либо продукции от затрат фактора x, то f '(x) называют предельным продуктом ; если g(x) есть функция издержек, т. е. функция g(x) выражает зависимость общих затрат от объема продукции x, то g'(x) называют предельными издержками.

Предельный  анализ в экономике - совокупность приемов исследования изменяющихся величин затрат или результатов при изменении объемов производства, потребления и т.п. на основе анализа их предельных значений. Большей частью плановые расчеты, основывающиеся на обычных статистических данных, ведутся в форме суммарных показателей. При этом анализ заключается главным образом в вычислении средних величин. Однако в некоторых случаях оказывается необходимым более детальное исследование с учетом предельных значений. Например, при выяснении издержек производства зерна в районе на перспективу принимают во внимание, что издержки могут быть различными в зависимости, при прочих равных условиях, от предполагаемых объемов сбора зерна, так как на вновь вовлекаемых в обработку худших землях издержки производства будут выше, чем по району в среднем.

Если зависимость  между двумя показателями v и x задана аналитически: v = f(x) - то средняя величина представляет собой отношение v/x, а предельная - производную .

Нахождение  производительности труда. Пусть известна функция  
u = u(t), выражающая количество произведенной продукции u за время работы t. Вычислим количество произведенной продукции за время  
D t = t 1 - t 0 : D u = u(t 1 ) - u(t 0 ) = u(t 0 + D t) - u(t 0 ). Средней производительностью труда называется отношение количества произведенной продукции к затраченному времени, т.е. z ср.= D u/ D t.

Производительностью труда рабочего z(t 0 ) в момент t 0 называется предел, к которому стремится z ср. при D t ® 0: . Вычисление производительности труда, таким образом, сводится к вычислению производной: z(t 0 ) = u'(t 0 ).

Издержки  производства K однородной продукции  есть функция количества продукции  x. Поэтому можно записать K = K(x). Предположим, что количество продукции увеличивается на D х . Количеству продукции x+ D х соответствуют издержки производства K(x + D х). Следовательно, приращению количества продукции D х соответствует приращение издержек производства продукции D K = K(x + D х) - K(x).

Среднее приращение издержек производства есть D K/ D х. Это приращение издержек производства на единицу приращения количества продукции.

Предел   называется предельными издержками производства.

Если обозначить через u(x) выручку от продажи x единиц товара, то  и называется предельной выручкой.

С помощью  производной можно вычислить  приращение функции, соответствующее  приращению аргумента. Во многих задачах  удобнее вычислять процент прироста (относительное приращение) зависимой переменной, соответствующий проценту прироста независимой переменной. Это приводит нас к понятию эластичности функции (иногда ее называют относительной производной ). Итак, пусть дана функция y = f(x), для которой существует производная y ¢ = f ¢ (x). Эластичностью функции y = f(x) относительно переменной x называют предел

.

Его обозначают E x (y) = x/y f ¢ (x) = .

Эластичность  относительно x есть приближенный процентный прирост функции (повышение или понижение), соответствующий приращению независимой переменной на 1%. Экономисты измеряют степень чуткости, или чувствительности, потребителей к изменению цены продукции, используя концепцию ценовой эластичности. Для спроса на некоторые продукты характерна относительная чуткость потребителей к изменениям цен, небольшие изменения в цене приводят к значительным изменениям в количестве покупаемой продукции. Спрос на такие продукты принято называть относительно эластичным или просто эластичным. Что касается других продуктов, потребители относительно нечутки к изменению цен на них, то есть существенное изменение в цене ведет лишь к небольшому изменению в количестве покупок. В таких случаях спрос относительно неэластичен или просто неэластичен. Термин совершенно неэластичный спрос означает крайний случай, когда изменение цены не приводит ни к какому изменению количества спрашиваемой продукции. Примером может служить спрос больных острой формой диабета на инсулин или спрос наркоманов на героин. И наоборот, когда при самом малом снижении цены покупатели увеличивают покупки до предела своих возможностей - тогда мы говорим, что спрос является совершенно эластичным.

 

19. НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ И ЕГО СВОЙСТВА.

Неопределённый  интегра́л для фукнции - это семейство всех первообразных данной функции.

 
Если функция  определена и непрерывна на промежутке и — ее первообразная, то есть при , то

,

где С  — произвольная постоянная.

Свойства неопределённого интеграла

Если  , то и , где - произвольная функция, имеющая непрерывную производную.

 

12. ОСНОВНЫЕ  МЕТОДЫ ИНТЕГРИРОВАНИЯ. 

1. Метод введения нового аргумента. Если

то

где — непрерывно дифференцируемая функция.

2. Метод разложения. Если

то

3. Метод подстановки. Если — непрерывна, то, полагая

где непрерывна вместе со своей производной , получим

4. Метод интегрирования по частям. Если и — некоторые дифференцируемые функции от , то

 

21. ОПРЕДЕЛЕННЫЙ  ИНТЕГРАЛЛ. ВЫЧИСЛЕНИЕ ПЛОЩАДЕЙ.

Определённый  интеграладдитивный монотонный нормированный функционал, заданный на множестве пар, первая компонента которых есть интегрируемая функция или функционал, а вторая — область в множестве задания этой функции (функционала).

Данное выше определение интеграла при всей его кажущейся общности в итоге приводит к привычному понимаю определённого интеграла, как площади подграфика функции на отрезке.

Геометрический смысл. Определённый интеграл как площадь фигуры:

Определённый  интеграл численно равен площади фигуры, ограниченной осью абсцисс, прямыми x = a и x = b и графиком функции f(x). 

Вычисление  площадей с помощью  интеграла.

1.Площадь  фигуры, ограниченной графиком непрерывной отрицательной на промежутке [ a ; b ] функции f (x), осью Ох и прямыми х=а и х= b :

2.Площадь  фигуры, ограниченной графиками непрерывных функций f (x), и прямыми х=а, х= b :

3.Площадь фигуры, ограниченной графиками непрерывных функций f (x) и :

4.Площадь  фигуры, ограниченной графиками  непрерывных функций f (x), и осью Ох:

 

22. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ В ЭКОНОМИКЕ.

Традиционно практическое приложение интеграла  иллюстрируется вычислением площадей различных фигур ,нахождением объемов тел и некоторыми приложениями в науке и технике. Интегральное исчисление дает богатый математический аппарат для моделирования и исследования процессов, происходящих в экономике. Так, в ходе изучения определенного интеграла студент может наглядно познакомиться с методами решения экономических задач, связанных с анализом воздействия конкретных мер государственной политики на благосостояние потребителей и производителей продукции. Приведем несколько примеров, иллюстрирующих приложение определенного интеграла для решения задач

такого  типа.

В курсе  микроэкономики часто рассматривают так называемые предельные величины , т.е. для данной величины, представляемой некоторой функцией y=f(x) , рассматривают её производную f´(x) .Например, если дана функция издержик С в зависимости от объема q выпускаемого товара С=С(q), о предельные издержки будут задаваться производной этой функции МС=С´(q). Её экономический смысл –это издержки на производство дополнительной единицы выпускаемого товара. Поэтому часто приходится находить функцию издержек по данной функции предельных издержек.

Интересной иллюстрацией возможности применения интегралов для анализа социально- экономического строения общества является так называемая “диаграмма или кривая Джинна” распределения богатства в обществе. Рассмотрим функцию d(z) , которая сообщает , что z –я часть самых бедных людей общества владеет d(z)-й частью всего общественного богатства. Если бы распределение богатства было равномерным , то график функции d(z) шел бы по диагонали квадрата. Поэтому чем больше площади заштрихованной линзы ,тем неравномернее распределено богатство в

обществе. Величина этой площади называется также  “коэффициентом Джинни” .Можно придумать много аналогичных характеристик; например ,для оценки распределения заработной платы в фирме или акций среди сотрудников и т.п. Соответствующие функции Джинни наверняка будут довольно сложными и без интегралов не обойтись.

Велика  в экономике и роль средних  величин. Напомним, что среднее значение величины x , изменяющейся во времени по закону x(t) на промежутке[a,b] ,есть [1/(b-a)]·∫x(t)dt. По своему смыслу среднее значение есть интегральная характеристика поведения величины “в целом”, на всем промежутке.

Информация о работе Шпаргалка по "Высшей математике"