Шпаргалка по "Математическому анализу"

Автор работы: Пользователь скрыл имя, 28 Января 2011 в 02:23, шпаргалка

Описание работы

Работа содержит: Пределы, органичение последовательности, определения и смысл 1, 2 производных, дифференциалы. Теоремы Лагранжа, Коши, Вейштрасса, правило Лопиталя.

Файлы: 1 файл

матан шп..doc

— 821.00 Кб (Скачать файл)

Док-во: Точка M0(x0,y0) и прямая

L: Ax+By+Cz=0, то расстояние

Пусть y=kx+b

асимптота =>

d(M,l)®0=>

kx-f(x)+b®0

тогда f(x)-kx®b

при x®+µ

существует  предел: 
 

Дифференцирование функций заданных параметрически.

Пример 1:

возьмем t=1, тогда x=2, y=3; y’(2)=7/3

Пример 2:

 

Аналитические признаки поведения функции.

Теорема: Критерий постоянства фун.

Функция f(x)=const на промежутке [a,b], тогда, когда f’(x)=0 на интервале (a,b).

Док-во: f(x)=c => f’(x)=c’=0 возьмем "xÎ[a,b] и применим т. Лангранжа f(x) [a,b] по т. Лангранжа f(x)-f(a)=f’(c)(x-a); cÎ(a,x); f(x)-f(a)=0; f(x)=f(a) для любого  x => f(x)=const.

Теорема: Достаточный признак возрастания функции.  Если  f’(x)>0, (a,b), то f(x) возрастает на [a,b].

Док-во:

возьмем x1, x2 Î[a,b]: x1<x2 => f(x2)>f(x1)

применим т. Лангранжа  f(x) на [x1,x2]

по этой теореме  f(x2)-f(x1)=f’(c)(x2-x1)>0  => f(x2)>f(x1).Замечание: данные условия не являются необходимыми.

Теорема: достаточный признак убывания функции. Если f’(x)<0 на (a,b), то f(x) убывает на [a,b].

Док-во 1: подобно предыдущему.

Док-во 2: g(x)=-f(x),тогда g’(x)=-f’(x)>0

=> g(x) - возрастает => f(x) – убывает.

Несложно показать, что если функция возрастает (убывает) на [a,b], то ее произв. не отрицат.(положит.) на (a,b).

f(x) возрастает: [a,b]=>f’(x)Ê0 (a,b).

Признаки  экстремума функций.

Опред: точка x0 называется точкой max (min) если существ. такая окрестность данной точки, что в x0 фун. принимает наибольшее (наименьшее) значение.

Точка х0 наз. точкой экстремума, если эта точка max или min данной функции.

Теорема: Необходимый признак экстремума функции.

Если х0 точка  экстремума f(x), то :

1). Либо не  существует f’(x0)

2). Либо f’(x0)=0

Док-во:

1). Не сущест. f’(x0)

2). Сущест. f’(x0) - по т. Ферма f’(x0)=0

Замечание: данные условия не являются достаточными.

 
 

Информация о работе Шпаргалка по "Математическому анализу"