Комплексный финансовый анализ эмитента ценных бумаг

Автор работы: Пользователь скрыл имя, 10 Января 2012 в 10:50, курсовая работа

Описание работы

Фондовый рынок США отличается от российского как небо от земли, и вот почему. Теми детскими болезнями, что болеет фондовый рынок России, Соединенные Штаты переболели еще в середине позапрошлого века. Начиная с 30-х годов ХХ-го века, в США действует система государственного контроля за рынком, реализуемая Комиссией по ценным бумагам и фондовым биржам (SEC), что предотвращает огромный процент мошенничества и недобросовестного участия на рынке (в частности, незаконного использования внутренней информации и притворных сделок). Усилиями SEC невозможно было предотвратить масштабные падения рынка в конце 70-х, 80-х годов прошлого столетия, а также кризис акций высокотехнологичного сектора в конце 2000 года, который развивается и по сей день

Содержание работы

Введение…...…………………………………………….…..……………………….4
1 Инвестиции, неопределенность и риски………………………………..…..…..7
1.1 Существо инвестирования в ценные бумаги…………………….………..7
1.2 Неопределенность, сопряженная с инвестициями………………….…….8
1.3 Риски инвестирования………………………………………………………9
1.4 Существующие способы оценки рисков инвестиций…………………...10
1.5 Роль предпочтений и ожиданий инвестора………………………………15
2 Базовые нечеткие описания для фондового менеджмента……...…..………..19
2.1 Понятие квазистатистики…………………………………………..……...19
2.2 Ключевые понятия теории нечетких множеств……………………..…...21
2.3 Операции над нечеткими подмножествами……………….……………..23
2.4 Нечеткие числа и операции над ними…………………………….……...24
2.4.1 Трапециевидное нечеткое число…………………...………………24
2.4.2 Треугольные нечеткие числа……………………………………….26
2.4.3 Операции над нечеткими числами…………………………………26
2.5 Нечеткие знания……………………………………………………………28
3 Комплексный финансовый анализ эмитента ценных бумаг...……………...…31
3.1 Подходы к комплексному финансовому анализу………………………..31
3.1.1 Риск банкротства эмитента…………………………………………31
3.1.2 Проблемы анализа риска банкротства предприятия……………...33
3.1.3 Существующие методы анализа риска банкротства……………...34
3.2 Метод комплексного финансового анализа на основе нечетких представлений………………………………………………………………....……43
3.2.1 Описание метода……………………………….……….…………..44
3.2.2 Расчетный пример анализа риска банкротства с использованием нечетких описаний…………………………………………………………………50
Заключение…………………………………….………..……………………..…...57
Список использованных источников……

Файлы: 1 файл

Готовый диплом.doc

— 927.00 Кб (Скачать файл)

      Таким образом, борьба с неопределенностью  на фондовом рынке обнаруживает свою бесперспективность, если такую борьбу вести традиционными способами. Необходимо кардинально менять подход к моделированию имеющейся информационной ситуации. Какую роль в этом могут сыграть нечеткие множества, будет ясно из дальнейшего.

      Здесь разобраны основные виды фондовых активов, пригодных для инвестиций, и показано, что каждому типу активов отвечает  собственный набор инвестиционных рисков, и соотношение этих рисков колеблется не только от инструмента к инструменту, но и от страны к стране, от отрасли к  отрасли и от эмитента к эмитенту. Всякой бумаге можно сопоставить карту рисков, где, наподобие мелей в фарватере реки, будут нанесены все уязвимые места данной бумаги. Однако создание такой карты требует кропотливого индивидуального анализа.

      Информация, содержащаяся в предпочтениях и ожиданиях инвестора, представляет собой очень ценный материал для моделирования. И нечеткость этих оценок, выраженных на естественном языке, может найти свое органичное переложение в формализмы теории нечетких множеств.

 

  1. Базовые нечеткие описания для  фондового менеджмента
    1. Понятие квазистатистики
 

      Прежде  чем вводить определение квазистатистики, целесообразно определиться с исходным термином  «статистика». Этот  термин многозначен и имеет огромное количество определений, обобщение которых выглядит следующим образом.

       Математическая статистика — раздел математики, посвященный математическим методам систематизации, обработки и использования статистических данных для научных и практических выводов. При этом статистическими данными называются сведения о числе объектов в какой-либо более или менее обширной совокупности, обладающих теми пли иными признаками [4].

      Смысл этого определения заключается в следующем. Мы имеем некий набор наблюдений по одному объекту или по совокупности объектов. Причем мы предполагаем, что за случайной выборкой наблюдений из гипотетической их генеральной совокупности кроется некий фундаментальный закон распределения, который сохранит свою силу еще на определенный период времени в будущем, что позволит нам прогнозировать тренд будуших наблюдений и расчетный диапазон отклонений этих наблюдений от расчетных ожидаемых трендовых значений.

      Если  мы договорились, что все наблюдения совершались в неизменных однотипных внешних условиях и/или наблюдались объекты с одинаковыми свойствами по факту, например, их появления по одной и той же причине, то мы оцениваем и подтверждаем искомый закон распределения частотным методом. Разбивая весь допустимый диапазон наблюдаемого параметра на ряд равных интервалов, мы можем подсчитать, сколько наблюдений попало в каждый выбранный интервал, то есть построить гистограмму. Известными методами мы можем перейти от гистограммы к плотности вероятностного распределения, параметры которого можно оптимальным образом подобрать. Таким образом, идентификация статистического закона завершена.

      Если  же мы имеем дело с «дурной» неопределенностью, когда у нас нет достаточного количества наблюдений, чтобы вполне корректно подтвердить тот или иной закон распределения, или мы наблюдаем объекты, которые, строго говоря, нельзя назвать однородными, тогда классической статистической выборки нет.

      В то же время, не имея достаточного числа  наблюдений, можно предположить, что за ними стоит проявление некоторого закона. Нельзя оценить параметры этого закона вполне точно, но можно прийти к определенному соглашению о виде этого закона и о диапазоне разброса ключевых параметров, входящих в его математическое описание. И вот здесь уместно ввести понятие квазистатистики.

      Квазистатистика – эта выборка наблюдений из их генеральной совокупности, которая считается недостаточной для идентификации вероятностного закона распределения с точно определенными параметрами, но признается достаточной для того, чтобы с той или иной субъективной степенью достоверности обосновать закон наблюдений в вероятностной или любой иной форме, причем параметры этого закона будут заданы по специальным правилам, чтобы удовлетворить требуемой достоверности идентификации закона наблюдений.

      Такое определение квазистатистики дает расширительное понимание вероятностного закона, когда он имеет не только частотный, но и субъективно-аксиологический смысл. Здесь намечены контуры синтеза вероятности в классическом смысле – и вероятности, понимаемой как структурная характеристика познавательной активности эксперта-исследователя.

      Также это определение намечает широкое  поле для компромисса в том, что  считать достаточным объемом  выборки, а что – нет. Если эксперт наблюдает один параметр единичного предприятия во времени, статистическая однородность наблюдений отсутствует, поскольку со временем непрерывно меняется рыночное окружение фирмы, условия ее хозяйствования, производственные факторы и т.д. Тем не менее, эксперт, оценивая некоторое достаточно приличное количество наблюдений, может сказать, что вот это состояние параметра типично для фирмы, а вот это – из ряда вон. Таким образом, эксперт высказывается о законе распределения параметра таким образом, что классифицирует все наблюдения нечетким, лингвистическим способом, и это уже само по себе есть факт генерации немаловажной для принятия решений информации. И, раз закон распределения сформулирован, то эксперт имел дело с квазистатистикой.

      Понятие квазистатистики, введенное здесь, дает широкий простор для применения нечетких описаний для моделирования законов, по которым проявляется та или иная совокупность наблюдений. Строго говоря, не постулируя квазистатистики, нельзя вполне обоснованно с научной точки зрения моделировать неоднородные и ограниченные по объему наблюдения процессы, протекающие на фондовом рынке и в целом в экономике.

    1. Ключевые  понятия теории нечетких множеств
 

      Ознакомимся с основами теории нечетких множеств [2, 5, 6].

      Носитель  U – это универсальное множество, к которому относятся все результаты наблюдений в рамках оцениваемой квазистатистики. Например, если мы наблюдаем возраст занятых в определенных отраслях экономики, то носитель – это отрезок вещественной оси [16, 70], где единицей измерения выступают годы жизни человека.

      Нечеткое  множество А – это множество значений носителя, такое, что каждому значению носителя сопоставлена степень принадлежности этого значения множеству А. Например: буквы латинского алфавита X, Y, Z безусловно принадлежат множеству Alphabet = {A, B, C, X, Y, Z}, и с этой точки зрения множество Alphabet – четкое. Но если анализировать множество «Оптимальный возраст работника», то возраст 50 лет принадлежит этому нечеткому множеству только с некоторой долей условности m, которую называют функцией принадлежности.

       Функция принадлежности mА(u)это функция, областью определения которой является носитель U, u Î U, а областью значений – единичный интервал [0,1]. Чем выше mА(u), тем выше оценивается степень принадлежности элемента носителя u нечеткому множеству А. Например, на рисунке 1 представлена функция принадлежности нечеткого множества «Оптимальный возраст работающего», полученная на основании опроса ряда экспертов.

      m(u) – функция принадлежности; u – возраст (годы человеческой жизни)

      Рисунок 1 – Вид функции принадлежности

      Видно что возраст от 20 до 35 лет оценивается экспертами как бесспорно оптимальный, а от 60 и выше – как бесспорно неоптимальный. В диапазоне от 35 до 60 эксперты проявляют неуверенность в своей классификации, и структура этой неуверенности как раз и передается графиком функции принадлежности [5].

      Заде  определяет лингвистическую переменную так:

      W = ,               (2.1)

где  w - название переменной,

      Т – терм-множество значений, т.е. совокупность ее лингвистических значений;

      U – носитель;

      G – синтаксическое правило, порождающее  термы множества Т;

      М – семантическое правило, которое  каждому лингвистическому значению w ставит в соответствие его смысл М(w), причем М(w) обозначает нечёткое подмножество носителя U.

      К примеру, дана лингвистическая переменная W = «Возраст работника». Определим синтаксическое правило G как определение «оптимальный», налагаемое на переменную W. Тогда полное терм-множество значений T={T1=Оптимальный возраст работника, T2=Неоптимальный возраст работника}. Носителем U является отрезок [20, 70], измеряемый в годах человеческой жизни. На нём определены две функции принадлежности: для значения T1mT1(u), она изображена на рисунке 1, для T2 mT2(u), причем первая из них отвечает нечеткому подмножеству M1, а вторая – M2. Конструктивное описание лингвистической переменной завершено [2].

    1. Операции  над нечеткими  подмножествами
 

      Для классических множеств вводятся операции:

  • пересечение множеств – операция над множествами А и В, результатом которой является множество С = А Ç В, которое содержит только те элементы, которые принадлежат и множеству A и множеству B;
  • объединение множеств – операция над множествами А и В, результатом которой является множество С = А È В, которое содержит те элементы, которые принадлежат множеству A или множеству B или обоим множествам;
  • отрицание множеств – операция над множеством А, результатом которой является множество , которое содержит все элементы, которые принадлежат универсальному множеству, но не принадлежат множеству A.

      Заде  предложил набор аналогичных операций над нечёткими множествами через операции с функциями принадлежности этих множеств. Так, если множество А задано функцией mА(u), а множество В задано функцией mВ(u), то результатом операций является множество С с функцией принадлежности mС(u), причем:

  • если С = А Ç В, то mС(u) = min(mА(u), mВ(u));           (2.2)
  • если С = А È В, то mС(u) = max(mА(u), mВ(u));           (2.3)
  • если , то mС(u) = 1- mА(u).             (2.4)
    1. Нечеткие  числа и операции над ними
 

      Нечеткое  число – это нечеткое подмножество универсального множества действительных чисел, имеющее нормальную и выпуклую функцию принадлежности, то есть такую, что а) существует такое значение носителя, в котором функция принадлежности равна 1, и b) при отступлении от своего максимума влево или вправо функция принадлежности убывает.

      Рассмотрим  два типа нечетких чисел, которые  нам понадообятся в дальнейшем.

      1. Трапециевидное  нечеткое число
 

      Исследуем некоторую квазистатистику и  зададим лингвистическую переменную W = «Значение параметра U», где U – множество значений носителя квазистатистики. Выделим два терм-множества значений: T1 = «U лежит в диапазоне примерно от a до b» с нечетким подмножеством М1 и безымянное значение T2 с нечетким подмножеством М2, причем выполняется . Тогда функция принадлежности mT1(u) имеет трапезоидный вид, как показано на рисунок 2.

Информация о работе Комплексный финансовый анализ эмитента ценных бумаг