Автор работы: Пользователь скрыл имя, 08 Ноября 2009 в 18:29, Не определен
Методические указания для студентов экономического факультета
решения
в чистых стратегиях не существует,
так как нижняя цена игры достигается
в стратегии A1 и её значение равно
2, в то время как верхняя цена игры достигается
в стратегии B4 и её значение равно 3.
Теоретическая часть |
Порядок платёжной матрицы (количество строк и столбцов) может быть уменьшен за счёт исключения доминируемых и дублирующих стратегий.
Стратегия K* называется доминируемой стратегией K**, если при любом варианте поведения противодействующего игрока выполняется соотношение
Ak* < Ak**,
где Ak* и Ak** - значения выигрышей при выборе игроком, соответственно, стратегий K* и K**.
В случае, если выполняется соотношение
Ak* = Ak**,
стратегия K* называется дублирующей по отношению к стратегии K**.
Например, в матрице (рис. 1.4)
B1 | B2 | B3 | B4 | B5 | B6 | |
A1 | 1 | 2 | 3 | 4 | 4 | 7 |
A2 | 7 | 6 | 5 | 4 | 4 | 8 |
A3 | 1 | 8 | 2 | 3 | 3 | 6 |
A4 | 8 | 1 | 3 | 2 | 2 | 5 |
Рис. 1.4.
Платёжная матрица с
стратегия A1 является доминируемой по отношению к стратегии A2, стратегия B6 является доминируемой по отношению к стратегиям B3, B4 и B5, а стратегия B5 является дублирующей по отношению к стратегии B4. Данные стратегии не будут выбраны игроками, так как являются заведомо проигрышными и удаление этих стратегий из платёжной матрицы не повлияет на определение нижней и верхней цены игры, описанной данной матрицей.
Множество
недоминируемых стратегий, полученных
после уменьшения размерности платёжной
матрицы, называется ещё множеством Парето
(по имени итальянского экономиста Вильфредо
Парето, занимавшегося исследованиями
в данной области) [7].
Теоретическая часть |
Рассмотрим
пример решения матричной игры в
чистых стратегиях, в условиях реальной
экономики, в ситуации борьбы двух предприятий
за рынок продукции региона.
Задача
Два предприятия производят продукцию и поставляют её на рынок региона. Они являются единственными поставщиками продукции в регион, поэтому полностью определяют рынок данной продукции в регионе.
Каждое
из предприятий имеет возможность
производить продукцию с применением
одной из трёх различных технологий. В
зависимости от качества продукции, произведённой
по каждой технологии, предприятия могут
установить цену единицы продукции на
уровне 10, 6 и 2 денежных единиц соответственно.
При этом предприятия имеют различные
затраты на производство единицы продукции.
(табл. 1.1.).
Таблица 1.1
Затраты
на единицу продукции, произведенной
на предприятиях региона (д.е.).
Технология |
Цена реализации единицы продукции, д.е. | Полная себестоимость единицы продукции, д.е. | |
Предприятие 1 | Предприятие 2 | ||
I | 10 | 5 | 8 |
II | 6 | 3 | 4 |
III | 2 | 1.5 | 1 |
В результате маркетингового исследования рынка продукции региона была определена функция спроса на продукцию:
Y = 6 – 0.5×X,
где Y – количество продукции, которое приобретёт население региона (тыс. ед.), а X – средняя цена продукции предприятий, д.е.
Данные о спросе на продукцию в зависимости от цен реализации приведены в табл. 1.2.
Таблица 1.2
Спрос на продукцию в регионе, тыс. ед.
Цена реализации 1 ед. продукции, д.е. | Средняя цена реализации 1 ед. продукции, д.е. | Спрос на продукцию, тыс. ед. | |
Предприятие 1 | Предприятие 2 | ||
10 | 10 | 10 | 1 |
10 | 6 | 8 | 2 |
10 | 2 | 6 | 3 |
6 | 10 | 8 | 2 |
6 | 6 | 6 | 3 |
6 | 2 | 4 | 4 |
2 | 10 | 6 | 3 |
2 | 6 | 4 | 4 |
2 | 2 | 2 | 5 |
Значения
Долей продукции предприятия 1, приобретенной
населением, зависят от соотношения цен
на продукцию предприятия 1 и предприятия
2. В результате маркетингового исследования
эта зависимость установлена и значения
вычислены (табл. 1.3.).
Таблица 1.3
Доля продукции предприятия 1, приобретаемой населением в зависимости от соотношения цен на продукцию
Цена реализации 1 ед. продукции, д.е. | Доля продукции предприятия 1, купленной населением | |
Предприятие 1 | Предприятие 2 | |
10 | 10 | 0,31 |
10 | 6 | 0,33 |
10 | 2 | 0,18 |
6 | 10 | 0,7 |
6 | 6 | 0,3 |
6 | 2 | 0,2 |
2 | 10 | 0,92 |
2 | 6 | 0,85 |
2 | 2 | 0,72 |
По условию задачи на рынке региона действует только 2 предприятия. Поэтому долю продукции второго предприятия, приобретённой населением, в зависимости от соотношения цен на продукцию можно определить как единица минус доля первого предприятия.
Стратегиями предприятий в данной задаче являются их решения относительно технологий производства продукции. Эти решения определяют себестоимость и цену реализации единицы продукции. В задаче необходимо определить:
1.
Существует ли в данной задаче
ситуация равновесия при
2. Существуют ли технологии, которые предприятия заведомо не будут выбирать вследствие невыгодности?
3.
Сколько продукции будет
Решение
задачи
1. Определим экономический смысл коэффициентов выигрышей в платёжной матрице задачи. Каждое предприятие стремится к максимизации прибыли от производства продукции. Но кроме того, в данном случае предприятия ведут борьбу за рынок продукции в регионе. При этом выигрыш одного предприятия означает проигрыш другого. Такая задача может быть сведена к матричной игре с нулевой суммой. При этом коэффициентами выигрышей будут значения разницы прибыли предприятия 1 и предприятия 2 от производства продукции. В случае, если эта разница положительна, выигрывает предприятие 1, а в случае, если она отрицательна – предприятие 2.
2.
Рассчитаем коэффициенты
-
от цены и себестоимости
-
от количества продукции,
-
от доли продукции,
Таким образом, значения разницы прибыли предприятий, соответствующие коэффициентам платёжной матрицы, необходимо определить по формуле (1):
D = p×(S×R1-S×C1) – (1-p) ×(S×R2-S×C2) (1),
где D – значение разницы прибыли от производства продукции предприятия 1 и предприятия 2;
p - доля продукции предприятия 1, приобретаемой населением региона;
S – количество продукции, приобретаемой населением региона;
R1 и R2 - цены реализации единицы продукции предприятиями 1 и 2;
C1 и C2 – полная себестоимость единицы продукции, произведённой на предприятиях 1 и 2.
Вычислим один из коэффициентов платёжной матрицы.
Пусть, например, предприятие 1 принимает решение о производстве продукции в соответствии с технологией III, а предприятие 2 – в соответствии с технологией II. Тогда цена реализации единицы. продукции для предприятия 1 составит 2 д.е. при себестоимости единицы. продукции 1,5 д.е. Для предприятия 2 цена реализации единицы. продукции составит 6 д.е. при себестоимости 4 д.е. (табл. 1.1).
Количество продукции, которое население региона приобретёт при средней цене 4 д.е., равно 4 тыс. ед. (таблица 1.2). Доля продукции, которую население приобретёт у предприятия 1, составит 0,85, а у предприятия 2 – 0,15 (табл. 1.3). Вычислим коэффициент платёжной матрицы a32 по формуле (1):
a32 = 0,85×(4×2-4×1,5) – 0,15×(4×6-4×4) = 0,5 тыс. ед.