Автор работы: Пользователь скрыл имя, 10 Марта 2011 в 13:33, курсовая работа
Целями данной курсовой является:
1.Рассмотреть основные модели поведения производителей
2.Классифицировать их по общим признакам
3.Создать информативную базу для написания дипломной работы
ВВЕДЕНИЕ 3
1. ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ ПОВЕДЕНИЯ ПРОИЗВОДИТЕЛЕЙ И ИХ ОСНОВНЫЕ ЭЛЕМЕНТЫ 5
1.1 Дуополия 5
1.2 Олигополия 5
2 Модели дуополии 7
2.1 Модель Курно 7
2.2 Модель Чемберлина 9
2.3 Модель Стэкльберга 11
2.4 Картельное соглашение 13
3 Модели олигополии 16
3.1 Модель олигополии Курно 16
3.2 Модель олигополии Бертрана 17
3.2 Модель олигополии Стэкльберга 19
3.2 Сговор и картели 23
ЗАКЛЮЧЕНИЕ 25
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 26
Пусть фирмы, как и ранее, производят однородную продукцию, зная линейную функцию рыночного спроса (1). Пусть только одна фирма (условно -первая фирма) имеет преимущество в издержках над всеми конкурентами. Сохраним предпосылку, что у всех фирм на рынке предельные издержки постоянны и равны средним издержкам.
При таких предпосылках введем обозначения. Пусть cL - предельные и средние издержки первой фирмы (лидера); cf - предельные и средние издержки каждой фирмы-последователя, где cL<cf . Пусть на рынке олигополии взаимодействуют одна фирма-лидер и п фирм-последователей, т.е. рыночный спрос обеспечивают (п+ 1) фирм:
(3.11)
Последователи вынуждены признать преимущество фирмы-лидера, ибо при значительном возрастании объема предложения рыночная цена может опуститься ниже уровня средних издержек фирмы-последователя, оставаясь при этом выше уровня средних издержек фирмы-лидера (cL<p<cf). Значит, увеличив масштабы производства, фирма-лидер при определенных условиях может получать положительную прибыль, в то время как ее конкуренты будут иметь убытки.
Таким образом, каждый последователь осознает лидерство первой фирмы, рассматривает уровень ее выпуска как заданный и решает задачу на максимум прибыли при нулевых предполагаемых вариациях. Учитывая условие (3.11), функцию прибыли олигополиста (3.2)можно записать для фирмы-последователя в виде:
(3.12)
Необходимое условие экстремума (3.3) примет вид:
(3.13)
Обратим внимание на то, что в модели олигополии Стэкльберга последователь рассматривает уровень выпуска любого конкурента как постоянный, последователи ведут себя как олигополисты Курно.
Используем для фирм-последователей тот же алгоритм решения модели, который упростил решение задачи при анализе модели олигополии Курно. Все фирмы-последователи находятся в одинаковых условиях. Следовательно, при достижении равновесия будут предлагать на рынок равные объемы производства qf. Условие (3.13)запишем в более удобном виде:
(3.14)
откуда легко получить функцию реакции любой фирмы-последователя:
(3.15)
Фирма-лидер
информирована о поведении
(3.16)
Учитывая возможную реакцию последователей, первая фирма решает задачу на максимум прибыли:
(3.17)
Необходимое условие экстремума примет вид:
(3.18)
где в точке равновесия ,
делав необходимые преобразования, получим функцию реакции фирмы-лидера:
(3.19)
которая показывает, каким должен быть наилучший ответ на действия последователя.
Если на рынке олигополии Стэкльберга более одного последователя, то Предположим, что фирма-последователь уменьшит объем выпуска на единицу. Предполагаемая вариация указывает, что тогда фирма-лидер может поставлять на рынок объем товара, больший единицы. Тем самым увеличится доля рыночного спроса, удовлетворяемая с меньшими издержками производства.
Решая систему уравнений (3.15), (3.19),можно рассчитать равновесные уровни выпуска фирмы-л ид ера и фирмы-последователя:
(3.20)
(3.21)
В условиях равновесия олигополисты Стэкльберга удовлетворяют рыночный спрос в объеме
(3.22)
при рыночной цене
(3.23)
Посмотрим, что произойдет на рынке олигополии Стэкльберга при изменении двух параметров: числа фирм-последователей (п) и размера преимущества фирмы-лидера в издержках (cf-cL). Очевидно, сто рост обоих
параметров оказывает одинаковое влияние на объем предложения фирм на рынке см. (3.20), (3.21).Объем предложения лидера увеличивается, а объем предложения каждого последователя уменьшается.
Как следствие, должно произойти увеличение доли лидера на рынке. Однако, как показывает исследование, прослеживается достаточно сложная функциональная зависимость доли лидера от числа фирм-последователей и размера преимущества лидера в издержках. Только в конечном итоге большое число конкурентов увеличивает значение преимущества лидера, и его доля на рынке начинает расти.
Интересно, что с ростом числа последователей, когда коэффициент стремится к единице, равновесная цена постепенно снижается и приближается к среднему арифметическому средних издержек лидера и последователя . Такой уровень цены превышает средние издержки лидера, но ниже средних издержек последователя. Конкурентоспособность последователей падает, их число должно уменьшиться. Преимущество лидера в издержках подтверждает обоснованность его притязаний на лидерство.
Теперь рассмотрим частный случай модели, когда все фирмы имеют равные
условия по издержкам производства (cL=cf=c). Основные параметры рыночного равновесия можно получить из формул (3.20) - (3.23):
(3.24)
(3.25)
(3.26)
(3.27)
Очевидно,
что объем предложения фирмы-
При достаточно большом числе последователей (когда ) объем предложения олигополистов Стэкльберга приближается к объему предложения в условиях совершенной конкуренции ,а цена фактически падает до уровня средних и предельных издержек.
При этом все существеннее становится различие в уровне выпуска лидера и последователя. Доля последователя в совокупном объеме предложения на рынке становится бесконечно мала по сравнению с размерами рынка. Доля лидера тоже постепенно снижается, но в конечном итоге не будет ниже, чем половина объема предложения на рынке.
3.4 Сговор и картели
Анализ моделей картеля становится многограннее, если отказаться от предпосылки о равенстве издержек производства у картелированных фирм. Основные проблемы, возникающие при этом в процессе образования и фукционирования картеля, можно по-прежнему выявить, рассматривая только двух олигополистов, поскольку результаты исследования легко обобщаются для случая п фирм в отрасли.
Пусть две фирмы предлагают однородный продукт, зная линейную функцию рыночного спроса (1). Пусть они решили вступить в картельное соглашение с условием максимизации совокупной прибыли отрасли:
(3.28)
где , - функции издержек в зависимости от объема выпуска каждой фирмы, причем .
Необходимое условие экстремума примет вид:
(3.29)
При
решении системы уравнений (3.
Для функции p=p(Q),где , частные производные по объемам выпуска конкурентов будут равны между собой , поскольку при нулевых предполагаемых вариациях при очевидно, что .
Таким образом, в условиях равновесия для любого i
(3.30)
При
организации картеля фирмы
В точке равновесия картеля из пфирм условие (3.31) примет вид:(3.31)
(3.31)
Оценим направление изменения прибыли, например, первого олигополиста. Частная производная прибыли первого олигополиста по переменной, характеризующей его объемы выпуска, положительна:
(3.32)
поскольку
функция рыночного проса
Стратегия
одностороннего увеличения производства
выгодна для любой фирмы
Заключение
В
данной курсовой работе представлена
тема «Модели поведения
В работе раскрыты показатели стратегического взаимодействия на рынке. Существенную роль имеют три элемента ценообразования: условия по спросу, условия по издержкам производства и предположения о максимизации прибыли. Модели имеют структуру эндогенных и экзогенных переменных. Стратегическое поведение каждой модели на рынке изменяется в зависимости от характеристики продукта (его однородности или дифференцированности) и от наличия потенциальной конкуренции.
Сравнительный
анализ, проведенный в данной курсовой
работе, выявляет их основные особенности,
преимущества и недостатки, помогает
оценить перспективы и
Список использованной литературы
Информация о работе Математические модели поведения производителей