Автор работы: Пользователь скрыл имя, 18 Февраля 2011 в 21:18, курсовая работа
Цель заданной работы - освоить математическую постановку транспортной задачи линейного программирования.
Введение…………………………………………………………………………………….3
Глава 1. Постановка и модели транспортной задачи линейного программирования………………………………………………………………...………5
1.1. Постановка транспортной задачи и ее математическая модель………..5
1.2. Закрытая модель транспортной задачи……………………………………..9
1.3. Открытая модель транспортной задачи…………………………………….10
Глава 2. Методы нахождения опорных и оптимальных планов………………12
2.1. Определение оптимального и опорного плана транспортной задачи…..12
2.2.Метод северо-западного угла……………………………………………………14
2.3. Метод минимального элемента……………………………………………….16
2.4. Метод аппроксимации Фогеля…………………………………………………19
2.5. Метод потенциалов………………………………………………………………21
Приложение……………………………………………………………………………..22
Заключение………………………………………………………………………………34
Список литературы…………………………………………………………………..36
Объединяя два последних неравенства в одно двойное, окончательно получаем
C¢¢M ? Z ? C¢ M,
т. е. линейная функция ограничена на множестве планов транспортной задачи.
1.3. Открытая модель транспортной задачи
Транспортная задача, в которой суммарные запасы и потребности не совпадают, т. е. не выполняется условие , называется открытой. Для открытой модели может быть два случая:
Линейная функция одинакова в обоих случаях, изменяется только вид системы ограничений.
Найти минимальное значение линейной функции
при ограничениях
, i = 1, 2, ..., m, (случай а)
, j = 1, 2, ..., n;
, i = 1, 2, ..., m, (случай б)
, j = 1, 2, ..., n,
xij ³ 0 (i = 1, 2, ..., m; j = 1, 2, ..., n).
Открытая модель решается приведением к закрытой модели.
В
случае (а), когда суммарные запасы
превышают суммарные
суммарные запасы, вводится фиктивный поставщик Am+1, запасы которого am+1 = .
Стоимость перевозки единицы груза как фиктивного потребителя, так и стоимость перевозки единицы груза от фиктивного поставщика полагают равными нулю, так как груз в обоих случаях не перевозится.
После преобразований задача принимает вид закрытой модели и решается обычном способом. При равных стоимостях перевозки единицы груза от поставщиков к фиктивному потребителю затраты на перевозку груза реальным потребителям минимальны, а фиктивному потребителю будет направлен груз от наименее выгодных поставщиков. То же самое получаем и в отношении фиктивного поставщика.
Прежде чем решать какую-нибудь транспортную задачу, необходимо сначала проверить, к какой модели она принадлежит, и только после этого составить таблицу для ее решения.
Глава 2. Методы нахождения опорных и оптимальных планов.
2.1. Определение оптимального и опорного плана транспортной задачи
Как и при решении задачи линейного программирования, симплексным методом, определение оптимального плана транспортной задачи начинают с нахождения какого-нибудь ее опорного плана.
Число переменных Xij в транспортной задаче с m пунктами отправления и n пунктами назначения равно nm, а число уравнений в системах (2) и (3) равно n+m. Так как мы предполагаем, что выполняется условие (5), то число линейно независимых уравнений равно n+m-1 отличных от нуля неизвестных.
Если в опорном плане число отличных от нуля компонентов равно в точности n+m-1, то план является не выраженным, а если меньше - то выраженным.
Для определения опорного плана существует несколько методов. Три из них - метод северно-западного угла, метод минимального элемента и метод аппроксимации Фогеля - рассмотрены ниже.
При составлении
Как и для всякой задачи линейного программирования, оптимальный план транспортной задачи является и опорным планом.
Для определения оптимального плана транспортной задачи можно использовать изложенные выше методы. Однако ввиду исключительной практической важности этой задачи и специфики ее ограничений [каждое неизвестное входит лишь в два уравнения системы (2) и (3) и коэффициенты при неизвестных равны единице] для определения оптимального плана транспортной задачи разработаны специальные методы. Одна из них - метод потенциалов - рассматривается ниже.
2.2.Метод северо-западного угла
При этом методе на каждом шаге построения первого опорного плана заполняется левая верхняя клетка (северо-западный угол) оставшейся части таблицы. При таком методе заполнение таблицы начинается с клетки неизвестного и заканчивается в клетке неизвестного , т. е. идет как бы по диагонали таблицы перевозок.
Пример.
|
Заполнение таблицы начинается с ее северо-западного угла, т. е. клетки с неизвестным . Первая база может полностью удовлетворить потребность первого заказчика . Полагая , вписываем это значение в клетку и исключаем из рассмотрения первый столбец. На базе остается измененный запас . В оставшейся новой таблице с тремя строками и четырьмя столбцами ; северо-западным углом будет клетка для неизвестного . Первая база с запасом может полностью удовлетворить потребность второго заказчика . Полагаем , вписываем это значение в клетку и исключаем из рассмотрения второй столбец. На базе остается новый остаток (запас) . В оставшейся новой таблице с тремя строками и тремя столбцами северо-западным углом будет клетка для неизвестного . Теперь третий заказчик может принять весь запас с базы . Полагаем , вписываем это значение в клетку и исключаем из рассмотрения первую строку. У заказчика из осталась еще не удовлетворенной потребность .
Теперь переходим к заполнению клетки для неизвестного и т.д.
Через шесть шагов у нас останется одна база с запасом груза (остатком от предыдущего шага) и один пункт с потребностью . Соответственно этому имеется одна свободная клетка, которую и заполняем, положив . План составлен. Базис образован неизвестными .
Опорный план имеет вид;
|
2.3. Метод минимального элемента
Суть метода заключается в том, что из всей таблицы стоимостей выбирают наименьшую и в клетку, которая ей соответствует, помещают меньшее из чисел и . Затем из рассмотрения исключают либо строку, соответствующую поставщику, запасы которого полностью израсходованы, либо столбец, соответствующий потребителю, потребности которого полностью удовлетворены, либо и строку и столбец, если израсходованы запасы поставщика и удовлетворены потребности потребителя. Из оставшейся части таблицы стоимостей снова выбирают наименьшую стоимость, и процесс распределения запасов продолжают, пока все запасы не будут распределены, а потребности удовлетворены.
Пример
Составить первоначальный опорный план методом минимального элемента для транспортной задачи вида:
|
Решение:
Задача сбалансирована.
Строим первоначальный опорный план методом минимального элемента.
Опорный план имеет вид:
|
2.4. Метод аппроксимации Фогеля
При определении опорного плана транспортной задачи методом аппроксимации Фогеля находят разность по всем столбцам и по всем строкам между двумя записанными в них минимальными тарифами. Эти разности записывают в специально отведенных для этого строке и столбце в таблице условий задачи. Среди указанных разностей выбирают минимальную. В строке (или в столбце), которой данная разность соответствует, определяют минимальная стоимость.