Автор работы: Пользователь скрыл имя, 16 Февраля 2011 в 13:10, курсовая работа
Системный анализ позволяет учесть и использовать в управлении всю имеющуюся информацию об управляемом объекте, согласовать принимаемые решения с точки зрения объективного, а не субъективного, критерия эффективности. Экономить на вычислениях при управлении то же самое, что экономить на прицеливании при выстрелах. Однако ЭВМ не только позволяет учесть всю информацию, но и избавляет управленца от ненужной ему информации, а всю нужную пускает в обход человека, представляя ему только самую обобщенную информацию, квинтэссенцию. Системный подход в экономике эффективен и сам по себе, без использования ЭВМ, как метод исследования, при этом он не изменяет ранее открытых экономических законов, а только учит, как их лучше использовать.
Введение
1. Техника безопасности при работе с ПК 5
1.1 Общие требования безопасности 5
1.2 Требования безопасности перед началом работы 5
1.3 Требования безопасности во время работы 6
1.4 Требования безопасности в аварийных ситуациях 6
1.5 Требования безопасности по окончании работы 6
2. Математическое моделирование экономических систем 6
2.1 Кибернетическая система 6
2.1.1. Основные системные понятия 6
2.1.2. Классификация систем. 8
2.1.3. Динамика системы 9
2.1.4. Кибернетическое моделирование 10
2.2 Управление 13
2.2.1. Понятие управления 13
2.2.2. Схема управления 14
2.2.3. Способы управления 14
2.2.4. Задачи управления 15
2.2.5. Использование ЭВМ в процессе управления 16
Заключение
Список использованной литературы
Сигнал
есть сообщение о состоянии
В дальнейшем мы будем употреблять термин "передача сигнала" вместо "информационное воздействие" и "воздействие" вместо "энергетическое воздействие".
Состояние элемента может меняться самопроизвольно, или в результате сигналов и воздействий, поступающих извне системы.
Сообщение - это совокупность сигналов.
Сигналы, вырабатываемые элементами системы, могут поступать за пределы системы, в этом случае они называются выходными сигналами системы. В свою очередь, на элементы могут поступать сигналы извне системы, они называются входными. Аналогичным образом определяются входные и выходные воздействия.
Структура системы - это совокупность ее элементов и связей между ними, по которым могут проходить сигналы и воздействия.
Входами называются элементы системы, к которым приложены входные воздействия или на которые поступают входные сигналы.
Входными показателями называются те показатели системы, которые изменяются в результате входного воздействия или сигнала.
Выходами называются элементы системы, которые осуществляют воздействие или передают сигнал в другую систему.
Выходными показателями называются те показатели системы, изменения которых вызывают выходное воздействие или выходной сигнал, либо сами являются таким воздействием или сигналом.
2.1.2. Классификация систем.
Классификацию кибернетических систем мы проведем по двум критериям: степень сложности системы и ее детерминированность.
По
степени сложности системы
1. Простые.
2. Сложные.
3. Сверхсложные.
К
простым относятся системы, имеющие
простую структуру и легко
поддающиеся математическому
Сложными являются системы, имеющие много внутренних связей и сложное математическое описание, реализуемое на ЭВМ.
Сверхсложные системы не поддаются математическому описанию.
Границы
между указанными классами размыты
и могут со временем смещаться, например,
совершенствование
По
второму критерию системы делятся
на детерминированные и
Все возможные случаи получаются комбинированием указанных классов:
1. Простые детерминированные системы:
- холодильник с регулятором;
- система размещения станков в цехе;
- система автобусных маршрутов;
- семейный бюджет;
- расписание занятий факультета;
2.
Сложные детерминированные
- ЭВМ;
- цветной телевизор;
- сборочный автоконвейер;
3.
Сверхсложные
- шахматы.
4. Простые вероятностные системы:
- лотерея;
-
система статистического
5. Сложные вероятностные системы:
-
система материально-
-
система диспетчирования
-
система диспетчирования
6.
Сверхсложные вероятностные
-
предприятие в целом, включая
все его технические,
- общество;
- человеческий мозг.
2.1.3. Динамика системы
Состояние системы - это совокупность значений ее показателей.
Все возможные состояния системы образуют ее множество состояний. Если в этом множестве определено понятие близости элементов, то оно называется пространством состояний.
Движение (поведение) системы - это процесс перехода системы из одного состояния в другое, из него в третье и т.д.
Если переход системы из одного состояния в другое происходит без прохождения каких-либо промежуточных состояний, то система называется дискретной.
Если
при переходе между любыми двумя
состояниями система
Возможны следующие режимы движения системы:
1)
равновесный, когда система
2)
периодический, когда система
через равные промежутки
Если
система находится в
3)
переходный режим - движение системы
между двумя периодами времени,
4) апериодический режим - система проходит некоторое множество состояний, однако закономерность прохождения этих состояний является более сложной, чем периодические, например, переменный период;
5)
эргодический режим - система
проходит все пространство
Свойства
объекта и его поведение
Для
всех практических задач второй способ
определения системы
2.1.4. Кибернетическое моделирование
Кибернетическая система - это множество взаимосвязанных объектов - элементов системы, способных воспринимать, запоминать и перерабатывать информацию, а также обмениваться информацией. Система включает также связи между элементами. Элементы и связи между ними могут обладать свойствами (показателями), каждое из которых может принимать некоторое множество значений. Примеры кибернетических систем: автопилот, регулятор температуры в холодильнике, ЭВМ, человеческий мозг, живой организм, биологическая популяция, человеческое общество.
Каждый элемент системы, в свою очередь, может быть системой, которая по отношению к исходной системе является подсистемой. В свою очередь, любая система может быть подсистемой другой системы, которая по отношению к ней является надсистемой.
Средой данной системы называется система, состоящая из элементов, не принадлежащих этой системе.
Объединение двух систем есть система, составленная из элементов объединяемых систем.
Пересечение двух систем есть система, состоящая из элементов, принадлежащих одновременно обоим этим системам.
Объединение системы и ее среды называется система-универсум.
Пересечение системы и ее среды называется пустой системой. Она не содержит ни одного элемента.
Для того, чтобы элементы системы могли воспринимать, запоминать и перерабатывать информацию, они должны обладать изменчивостью, т.е. менять свои свойства. Говорят, что элемент может находиться в разных состояниях. Каждый элемент характеризуется набором показателей. При изменении значения хотя бы одного из показателей элемент переходит в другое состояние, т.е. состояние элемента определяется совокупностью конкретных значений показателей элемента. Система в целом также может рассматриваться как элемент, она характеризуется своими показателями и может переходить из одного состояния в другое.
Показатели могут быть числовыми и нечисловыми. Числовые показатели могут быть непрерывными и дискретными. Нечисловые показатели обычно выражают в виде числовых, например - интеллект (коэффициент интеллекта), уровень знаний студента (оценка в баллах), отношение одного человека к другому (социологические индексы).
Элемент может осуществлять воздействие на другие элементы системы, изменяя их состояние. Для перехода элемента из одного состояния в другое требуется определенная энергия. Если физический процесс воздействия одного элемента на другой дает также энергию для перевода в другое состояние, то на второй элемент осуществляется энергетическое воздействие. Если же указанный процесс дает только сведения о состоянии воздействующего элемента, а энергия для перевода в другое состояние элемента, на который направлено воздействие, берется из иного источника, то на элемент осуществляется информационное воздействие. Говорят, что первый элемент передает сигнал второму элементу.
Сигнал
есть сообщение о состоянии
В дальнейшем мы будем употреблять термин "передача сигнала" вместо "информационное воздействие" и "воздействие" вместо "энергетическое воздействие".
Состояние элемента может меняться самопроизвольно, или в результате сигналов и воздействий, поступающих извне системы.
Сообщение - это совокупность сигналов.
Сигналы, вырабатываемые элементами системы, могут поступать за пределы системы, в этом случае они называются выходными сигналами системы. В свою очередь, на элементы могут поступать сигналы извне системы, они называются входными. Аналогичным образом определяются входные и выходные воздействия.
Структура системы - это совокупность ее элементов и связей между ними, по которым могут проходить сигналы и воздействия.
Входами называются элементы системы, к которым приложены входные воздействия или на которые поступают входные сигналы.
Входными показателями называются те показатели системы, которые изменяются в результате входного воздействия или сигнала.
Выходами называются элементы системы, которые осуществляют воздействие или передают сигнал в другую систему.
Выходными показателями называются те показатели системы, изменения которых вызывают выходное воздействие или выходной сигнал, либо сами являются таким воздействием или сигналом.
В процессе исследования объекта часто бывает нецелесообразно или даже невозможно иметь дело непосредственно с этим объектом. Удобнее бывает заменить его другим объектом, подобным данному в тех аспектах, которые важны в данном исследовании. Например, модель самолета продувают в аэродинамической трубе, вместо того, чтобы испытывать настоящий самолет - это дешевле. При теоретическом исследовании атомного ядра физики представляют его в виде капли жидкости, имеющей поверхностное натяжение, вязкость и т.п. Управляемые объекты являются, как правило, очень сложными, поэтому процесс управления неотделим от процесса изучения этих объектов.
Модель
- это мысленно представляемая или
материально реализованная
Информация о работе Математическое моделирование экономических систем