Автор работы: Пользователь скрыл имя, 16 Февраля 2011 в 13:10, курсовая работа
Системный анализ позволяет учесть и использовать в управлении всю имеющуюся информацию об управляемом объекте, согласовать принимаемые решения с точки зрения объективного, а не субъективного, критерия эффективности. Экономить на вычислениях при управлении то же самое, что экономить на прицеливании при выстрелах. Однако ЭВМ не только позволяет учесть всю информацию, но и избавляет управленца от ненужной ему информации, а всю нужную пускает в обход человека, представляя ему только самую обобщенную информацию, квинтэссенцию. Системный подход в экономике эффективен и сам по себе, без использования ЭВМ, как метод исследования, при этом он не изменяет ранее открытых экономических законов, а только учит, как их лучше использовать.
Введение
1. Техника безопасности при работе с ПК 5
1.1 Общие требования безопасности 5
1.2 Требования безопасности перед началом работы 5
1.3 Требования безопасности во время работы 6
1.4 Требования безопасности в аварийных ситуациях 6
1.5 Требования безопасности по окончании работы 6
2. Математическое моделирование экономических систем 6
2.1 Кибернетическая система 6
2.1.1. Основные системные понятия 6
2.1.2. Классификация систем. 8
2.1.3. Динамика системы 9
2.1.4. Кибернетическое моделирование 10
2.2 Управление 13
2.2.1. Понятие управления 13
2.2.2. Схема управления 14
2.2.3. Способы управления 14
2.2.4. Задачи управления 15
2.2.5. Использование ЭВМ в процессе управления 16
Заключение
Список использованной литературы
При моделировании используется аналогия между объектом - оригиналом и его моделью. Аналогии бывают следующими:
1)
внешняя аналогия (модель самолета,
корабля, микрорайона,
2)
структурная аналогия (водопроводная
сеть и электросеть
3)
динамическая аналогия (по поведению
системы) - маятник моделирует
4)
кибернетические модели
С описанием производят машинные эксперименты: меняют те или иные показатели, т.е. изменяют состояние объекта и регистрируют его поведение в этих условиях. Часто поведение объекта имитируется во много раз быстрее, чем на самом деле, благодаря быстродействию ЭВМ. Кибернетическую модель часто называют имитационной моделью.
Формирование описания объекта (его системный анализ) является важнейшим звеном кибернетического моделирования. Вначале исследуемый объект разбивается на отдельные части и элементы, определяются их показатели, связи между ними и взаимодействия (энергетические и информационные). В результате объект оказывается представленным в виде системы. При этом очень важно учесть все, что имеет значение для той практической задачи, в которой возникла потребность в кибернетическом моделировании, и вместе с тем не переусложнить систему.
Следующим
этапом является составление математических
моделей эффективного функционирования
объекта и его системной
2.2 Управление
2.2.1. Понятие управления
Управление - это такое входное воздействие или сигнал, в результате которого система ведет себя заданным образом. Обычно управление направлено на то, чтобы система находилась в стационарном режиме (равновесном или периодическом).
Управление
развитием системы - это воздействия
или сигналы, направленные на изменение
структуры или множества
Таким образом, управление всегда имеет определенную цель. Обычно она формулируется как ограничение на множество возможных состояний системы, или какой-либо показатель системы, который нужно поддерживать в заданных пределах, либо максимизировать. Если известна зависимость указанного показателя от входных воздействий на систему, или ее состояния, то он называется целевой функцией.
Часто цель не может быть достигнута сразу, а необходимо пройти несколько этапов, на каждом из которых имеется локальная цель, не совпадающая с главной целью. Эти локальные цели называются задачами управления. Пример: автобус идет по маршруту. Цель - конечный пункт. Задача - проехать по данной улице. Может оказаться, что направление движения по улице сильно отличается от направления на конечный пункт.
Для осуществления процесса управления нужно наличие трех элементов:
- управляемый объект;
- орган управления;
- исполнительный орган.
Орган управления - это система, на вход которой поступают сигналы о состоянии управляемого объекта и среды, а на выходе - сигнал о необходимом в данной ситуации управлении.
Исполнительный орган - это система, на вход которой поступает сигнал о необходимом управлении, а на выходе вырабатывается управляющее воздействие на управляемый объект.
Система управления объединяет орган управления и исполнительный орган.
Системы управления бывают следующими:
1) ручные - без использования вычислительной техники;
2) автоматизированные - используется вычислительная техника, которая принимает на себя основной поток информации, однако человек остается важнейшим звеном системы управления, функцией которого является принятие решений либо утверждение решений, выработанных ЭВМ;
3) автоматические - человек не участвует в процессе управления и не входит в данную систему управления. Обычно он осуществляет контроль за правильностью функционирования объекта управления и вмешивается только при возникновении особых (например, аварийных) ситуаций. В автоматических системах управления человек является звеном другой системы управления, для которой управляемым объектом является данная автоматическая СУ с ее управляемым ею объектом.
2.2.2. Схема управления
Исполнительный орган изображен в виде вентиля, что отражает процесс, происходящий в нем: маломощное воздействие приводит в движение большой поток энергии, который идет в УО в качестве управляющего воздействия (выключатель, кран и т.п.), т.е. ОУ сам является исполнительным органом по отношению к ИО.
2.2.3. Способы управления
Различают три способа управления, в зависимости от того, на основании какой информации ОУ формирует управляющий сигнал.
1) Управление по отклонению - используются сведения об изменениях выхода УО, его поведения. Этот способ реализует замкнутая схема управления.
Здесь имеется замкнутый контур y -> u -> x -> y , поэтому такая схема управления называется замкнутой. Связь ОУ -> УО называется прямой, УО -> ОУ - обратной связью.
Обратная связь может быть положительной и отрицательной. Положительная обратная связь такая, при которой увеличение y приводит к таким значениям x, которые влекут дальнейший рост y, при отрицательной - рост y приводит к значениям x, вызывающим уменьшение y.
Примеры положительной обратной связи: цепные реакции, взрыв, система аварийной сигнализации. Во всех подобных случаях небольшое отклонение должно вызвать как можно более энергичную реакцию управляемого объекта.
Отрицательная обратная связь осуществляется, например, при управлении запасом товаров на складе: при возникновении существенного отклонения запаса от нормативного предпринимаются меры по устранению этого отклонения - завоз товаров, либо реализация излишка.
2) Управление по возмущению или нагрузке - используются сведения о возмущающих воздействиях на управляемый объект со стороны окружающей среды. Этот способ управления реализует разомкнутая схема управления.
3)
Комбинированное управление
Замкнутая система управления позволяет быстро реагировать на нежелательные отклонения в поведении объекта, с целью устранить эти отклонения. Однако она не следит за причинами, вызвавшими отклонения. В результате объект может выйти из-под контроля, а управление только замедлит его нежелательное поведение. Пример: лечение рака аспирином. Замкнутая система поддерживает равновесие, она обеспечивает достижение цели управления, когда возмущающих воздействий много и не все они могут быть измерены, а также когда заранее не известно влияние возмущений на управляемые величины.
Разомкнутая система управления учитывает причины (возмущения среды), которые вызывают то или иное поведение объекта. Она позволяет лечить болезнь, а не симптомы. Однако результат управления проявляется медленно, может оказаться, что объект уже пришел в нужное состояние, однако продолжаются управляющие воздействия, которые выводят его из этого состояния.
Если СУ реагирует на каждое, даже случайное, отклонение, то может возникать "рысканье" системы, ее неустойчивость.
Комбинированная СУ позволяет осуществлять учет длительно действующих, запаздывающих по своему действию причин (возмущения среды) и фактических результатов управления (поведения объекта). Вначале происходит грубая настройка объекта на условия его работы, затем точное регулирование в соответствии с фактическим поведением объекта.
2.2.4. Задачи управления
Имеются четыре основных задачи управления:
1) стабилизация;
2) программное управление;
3) слежение;
4) оптимальное управление.
Стабилизация системы - это поддержание ее выходных показателей вблизи заданных значений у0.
Примеры:
1) Система управления организма - поддержание температуры тела, давления крови и т.п.
2) электроснабжение - стабилизация напряжения и частоты тока.
3)
управление
Программное управление - поддержание выходных показателей вблизи заданных значений y0, зависящих от времени заданным образом. Схема - та же, с заменой y0 на y0(t).
Примеры:
1) вывод ракеты на спутниковую орбиту, причем наилучшая траектория У0(t) заранее известна - рассчитана, исходя из свойств земной атмосферы и тяготения;
2) станок с числовым программным управлением;
3) программа "500 дней".
4)
федеральные и региональные
Слежение - обеспечение как можно более точного соответствия между состоянием или поведением управляемого объекта и состоянием или поведением какого-либо другого объекта, которым управлять невозможно. Он рассматривается как составная часть среды.
Примеры:
1)
управление производством
2)
ритм и глубина дыхания,
3) зенитная ракета и самолет противника;
4)
антенна радиолокатора и
5) робототехническая система "глаз-рука".
При оптимальном управлении нужно наилучшим образом выполнить задачу, стоящую перед объектом, при заданных условиях и ограничениях.
Примеры целевых функций: быстродействие, к.п.д., прибыль, расход сырья и полуфабрикатов в технологическом процессе.
2.2.5. Использование ЭВМ в процессе управления
Первоначально вычислительные средства использовались как вспомогательные, для выполнения отдельных, наиболее трудоемких операций обработки данных. Основной поток информации о состоянии управлемого объекта и управляющих воздействиях проходил через аппарат управления, состоящий из людей:
Затем,
в процессе совершенствования
К сожалению, многие системы управления формируются по первому способу. Они создают гораздо больше проблем, чем решают. Не высвобождают управленческий персонал и не облегчают его работу, а наоборот - требуют дополнительного персонала и ресурсов. Нужно чтобы ЭВМ состояла при человеке, а не человек при ЭВМ. Но это требует коренной перестройки методов управления, навыков, имеющегося документооборота.
Нужно добиться того, чтобы руководитель получал именно ту информацию, которая ему нужна для принятия решений. Например, директор не должен знать, какие вагоны не поступили, какой груз находится в каждом вагоне, ему нужно знать по каким выпускаемым изделиям имеется недопоставка сырья. Если же директор не соглашается отказаться от лишней информации, значит он в своей деятельности подменяет начальника отдела снабжения, не умеет правильно руководить. ЭВМ берет на себя информационные входы СУ, избавляет от них человека. Часто стараются и ЭВМ избавить от лишней информации - для этого ставят в пунктах сбора данных микро и мини- ЭВМ, которые осуществляют первичную обработку данных перед отправкой в большую ЭВМ.
Информация о работе Математическое моделирование экономических систем