Автор работы: Пользователь скрыл имя, 16 Марта 2010 в 20:32, Не определен
Введение……………………………………………………………………3
Применение радиоактивных источников в различных
сферах деятельности человека………………………………………………………….3
Химическая промышленность
Деревообрабатывающая промышленность
Городское хозяйство
Медицинская промышленность
Радиационная стерилизация изделий и материалов
Производство радиоизотопных электрокардиостимуляторов
Сельское хозяйство и пищевая промышленность
Предпосевное облучение семян и клубней
Радиоизотопная диагностика (введение в организм радиоактивного препарата)
Радиоактивные отходы, проблемы их захоронения…………………..8
Неразработанность метода……………………………………………………………....12
Давление внешних обстоятельств……………………………………………………....13
Принятие решений и технологическая сложность проблемы………………………...13
Неопределённость концепции…………………………………………………………...14
Список литературы……………………………………………………….16
По окончании срока эксплуатации р/а источники в установленном порядке должны быть доставлены на специальные комбинаты для переработки (кондиционирования) с последующим захоронением как радиоактивные отходы.
Проблема радиоактивных отходов является частным случаем общей проблемы загрязнения окружающей среды отходами человеческой деятельности. Но в то же время резко выраженная специфика РАО требует применения специфичных методов обеспечения безопасности для человека и биосферы.
Исторический опыт обращения с производственными и бытовыми отходами сформировался в условиях, когда осознание опасности отходов и программ её нейтрализации опиралось на непосредственные ощущения. Возможности последних обеспечивали адекватность осознания связей непосредственно воспринимаемых органами чувств воздействий с наступающими последствиями. Уровень знаний позволял представить логику механизмов воздействия отходов на человека и биосферу, достаточно точно соответствующую реальным процессам. К практически выработанным традиционным представлениям о методах обезвреживания отходов исторически присоединились и разработанные с открытием микроорганизмов качественно иные подходы, образовав не только эмпирически, но и научно обоснованное методическое обеспечение безопасности человека и среды его обитания. В медицине и системах управления обществом были сформированы соответствующие подотрасли, например, санитарно-эпидемиологическое дело, коммунальная гигиена и т.п.
С бурным развитием химии и химических производств в производственных и бытовых отходах в массовых количествах появились новые, ранее не попадавшие в них элементы и химические соединения, в том числе не существующие в природе. По масштабам это явление стало сопоставимо с естественными геохимическими процессами. Человечество оказалось перед необходимостью выйти на другой уровень оценки проблемы, где должны учитываться, например, аккумулятивные и отложенные эффекты, методы выявления дозировок воздействий, необходимость применения новых методов и специальной высокочувствительной аппаратуры для обнаружения опасности и т.п.
Качественно иную опасность, хотя и сходную
с химической по некоторым из признаков,
принесла человеку «радиоактивность»,
как явление, не воспринимаемое органами
чувств человека непосредственно, не уничтожаемое
известными человечеству способами и
пока ещё в целом недостаточно изученное:
нельзя исключить обнаружение новых свойств,
воздействий и последствий этого явления.
Поэтому при формировании общих и конкретных
научных и практических задач «по ликвидации
опасности РАО» и, в особенности, при решении
этих задач возникают постоянные затруднения,
показывающие, что традиционная постановка
недостаточно точно отражает реальный,
объективный характер «проблемы РАО».
Тем не менее, идеология такой постановки
широко распространена в правовых и не
правовых документах общегосударственного
и межгосударственного характера, которые,
как можно предположить, охватывают широкий
спектр современных научных воззрений,
направлений, исследований и практических
мероприятий; учитывают разработки всех
известных отечественных и иностранных
организаций, занимающихся «проблемой
РАО».
Постановлением Правительства РФ от 23.10.1995 г. № 1030 утверждена Федеральная целевая Программа «Обращение с радиоактивными отходами и отработавшими ядерными материалами, их утилизация и захоронение на 1996-2005 годы».
Радиоактивные отходы рассматриваются в ней «как не подлежащие дальнейшему использованию вещества (в любом агрегатном состоянии), материалы, изделия, оборудования, объекты биологического происхождения, в которых содержание радионуклидов превышает уровни, установленные нормативными актами. В Программе выделен специальный раздел «Состояние проблемы», содержащий описание конкретных объектов и общественных сфер, где происходит «обращение с радиоактивными отходами», а также общие количественные характеристики «проблемы РАО» в России.
«Большое количество накопленных некондиционированных радиоактивных отходов, недостаточность технических средств для обеспечения безопасного обращения с этими отходами и отработавшим ядерным топливом, отсутствие надёжных хранилищ для их длительного хранения и (или) захоронения повышают риск возникновения радиационных аварий и создают реальную угрозу радиоактивного загрязнения окружающей среды, переоблучения населения и персонала организаций и предприятий, деятельность которых связана с использованием атомной энергии и радиоактивных материалов».
Основные источники радиоактивных отходов (РАО) высокого уровня активности – атомная энергетика (отработанное ядерное топливо) и военные программы (плутоний ядерных боеголовок, отработанное топливо транспортных реакторов атомных подводных лодок, жидкие отходы радиохимических комбинатов и др.).
Возникает вопрос: следует ли рассматривать РАО просто как отходы или как потенциальный источник энергии? От ответа на этот вопрос зависит, хотим ли мы их хранить (в доступном виде) или захоранивать (т.е. делать недоступными). Общепринятый ответ в настоящее время состоит в том, что РАО – это действительно отходы, за исключением, может быть, плутония. Плутоний теоретически может служить источником энергии, хотя технология получения энергии их него сложна и довольно опасна. Многие страны, в том числе Россия и США, находятся теперь на распутье: «запускать» плутониевую технологию, используя плутоний, высвобождаемый при разоружении, или захоранивать этот плутоний? Недавно правительство России и Минатом объявили, что они хотят перерабатывать оружейный плутоний совместно с США; это означает возможность развития плутониевой энергетики.
В течение 40 лет учёные сравнивали варианты
избавления от РАО. Главная идея – их надо
поместить в такое место, чтобы они не
могли попасть в окружающую среду и нанести
вред человеку. Эту способность вредить
РАО сохраняют в течение десятков и сотен
тысяч лет. Облучённое
ядерное топливо,
которое мы извлекаем из реактора, содержит
радиоизотопы с периодами
полураспада от нескольких часов до
миллиона лет (период полураспада – это
время, в течение которого количество
радиоактивного вещества уменьшается
вдвое, причём в ряде случаев возникают
новые радиоактивные вещества). Но общая
радиоактивность отходов значительно
снижается со временем. Для радия период
полураспада составляет 1620 лет, и нетрудно
подсчитать, что через 10 тысяч лет останется
около 1/50 первоначального количества
радия. Нормативы большинства стран предусматривают
обеспечение безопасности отходов на
срок 10 тысяч лет. Конечно, это не значит,
что по истечении этого времени РАО более
не будут опасны: мы попросту перелагаем
дальнейшую ответственность за РАО на
отдалённое потомство. Для этого надо,
чтобы места и форма захоронения этих
отходов были известны потомству. Заметим,
что вся письменная история человечества
меньше 10 тысяч лет. Задачи, возникающие
при захоронении РАО, беспрецедентны в
истории техники: люди никогда не ставили
себе таких долговременных целей.
Интересный аспект проблемы состоит в том, что надо не только защищать человека от отходов, но одновременно защищать отходы от человека. За срок, отводимый на их захоронение, сменятся многие социально-экономические формации. Нельзя исключить, что в определённой ситуации РАО могут стать желанным объектом для террористов, мишенями для удара при военном конфликте и т.п. Понятно, что, рассуждая о тысячелетиях, мы не можем полагаться, скажем, на правительственный контроль и охрану – невозможно предвидеть, какие изменения могут произойти. Может быть, лучше всего сделать отходы физически недоступными для человека, хотя, с другой стороны, это затруднило бы нашим потомкам дальнейшие меры безопасности.
Понятно, что ни одно техническое решение, ни один искусственный материал не может «работать» в течение тысячелетий. Очевидный вывод: изолировать отходы должна сама природная среда. Рассматривались варианты: захоронить РАО в глубоких океанических впадинах, в донных осадках океанов, в полярных шапках; отправлять их в космос; закладывать их в глубокие слои земной коры. В настоящее время общепринято, что оптимальный путь – захоронение отходов в глубоких геологических формациях.
Понятно, что РАО в твёрдой форме менее склонны к проникновению в окружающую среду (миграции), чем жидкие РАО. Поэтому предполагается, что жидкие РАО будут вначале переводиться в твёрдую форму (остекловываться, превращаться в керамику и т.п.). Тем не менее, в России всё ещё практикуется закачка жидких высокоактивных РАО в глубокие подземные горизонты (Красноярск, Томск, Димитровград).
В настоящее время принята так называемая «многобарьерная» или «глубоко эшелонированная» концепция захоронения. Отходы сперва сдерживаются матрицей (стекло, керамика, топливные таблетки), затем многоцелевым контейнером (используемым для транспортировки и для захоронения), затем сорбирующей (поглощающей) отсыпкой вокруг контейнеров и, наконец, геологической средой.
Итак, мы попытаемся захоранивать РАО в глубокие геологические фракции. При этом нам поставлено условие: показать, что наше захоронение будет работать, как мы это планируем, на протяжении 10 тысяч лет. Посмотрим теперь, какие проблемы мы встретим на этом пути.
Первые проблемы встречаются на этапе выбора участков для изучения.
В
США, например, ни один штат не хочет. Чтобы
общегосударственное
Как это выглядит в России? В настоящее время в России всё ещё можно изучать площади, не ощущая значительного давления местных властей (если не предполагать при этом захоронение вблизи городов!). Полагаю, что по мере усиления реальной независимости регионов и субъектов Федерации ситуация будет смещаться в сторону ситуации США. Уже сейчас ощущается склонность Минатома переместить свою активность на военные объекты, над которыми практически нет контроля: например, для создания захоронения предполагается архипелаг Новая Земля (российский полигон № 1), хотя по геологическим параметрам это далеко не лучшее место, о чём ещё будет речь дальше.
Но
предположим, что первый этап позади
и площадка выбрана. Надо её изучить
и дать прогноз функционирования
захоронения на 10 тысяч лет. Тут
появляется новая проблема.
Неразработанность метода.
Геология
– описательная наука. Отдельные
разделы геологии занимаются предсказаниями
(например, инженерная геология предсказывает
поведение грунтов при
Представим
всё же, что нам удалось выработать
разумный план изучения площадки. Понятно,
что для осуществления этого плана понадобится
много лет: например, гора Яка в штате Невада
изучается уже более 15 лет, но заключение
о пригодности или непригодности этой
горы будет сделано не ранее чем через
5 лет. При этом программа захоронения
будет испытывать всё возрастающее давление.
Давление внешних обстоятельств.
В годы холодной войны на отходы не обращали внимания; они накапливались, хранились во временных контейнерах, терялись и т.п. Пример – военный объект Хэнфорд (аналог нашего «Маяка»), где находится несколько сот гигантских баков с жидкими отходами, причём для многих из них не известно, что находится внутри. Одна проба стоит 1 миллион долларов! Там же, в Хэнфорде, примерно раз в месяц обнаруживаются закопанные и «забытые» бочки или ящики с отходами.
В целом, за годы развития ядерных технологий, отходов скопилось очень много. Временные хранилища на многих атомных станциях близки к заполнению, а на военных комплексах они часто находятся на грани выхода из строя «по старости» или даже за этой гранью.
Итак, проблема захоронения требует срочного решения. Осознание этой срочности становится всё более острым, тем более что 430 энергетических реакторов, сотни исследовательских реакторов, сотни транспортных реакторов атомных подводных лодок, крейсеров и ледоколов продолжают непрерывно накапливать РАО. Но у людей, прижатых к стенке, не обязательно возникают лучшие технические решения, и возрастает вероятность ошибок. Между тем в решениях, связанных с ядерной технологией, ошибки могут очень дорого стоить.