Автор работы: Пользователь скрыл имя, 08 Сентября 2011 в 20:09, курс лекций
Лекция 1. Краткая история и предмет экологии.
Лекция 2. Экологическая система. Принципы и концепции.
Лекция 3. Энергия в экологических системах.
Лекция 4. Энергия и продуктивность.
Лекция 5. Пищевые цепи, пищевые сети и трофические уровни.
Лекция 6. Трофическая структура и трофическая функция экосистемы.
Лекция 7. Биосфера как глобальная экосистема.
Лекция 8. Биогеохимические циклы
Лекция 9. Круговороты основных биогенных элементов:
глобальный круговорот воды и углерода.
Лекция 10. Круговороты основных биогенных элементов:
круговорот кислорода.
Лекция 11. Круговороты азота и серы .
Лекция 12. Осадочный цикл .
Лекция 13. Пути возвращения веществ в круговорот: коэффициент возврата.
Лекция 14. Воздействие среды обитания на биоту.
Лекция 15. Абиотические факторы среды обитания.
Лекция 16. Биотические отношения и роли видов в экосистеме.
Лекция 17. Развитие и эволюция экосистемы.
Всякий
источник энергии, уменьшающий затраты
на самоподдержание экосистемы и увеличивающий
ту долю энергии, которая может перейти
в продукцию, называется вспомогательным
потоком энергии или энергетической субсидией.
Энергетическая классификация систем .
Источник и качество доступной энергии в той или иной степени определяют видовой состав и численность организмов, характер функциональных процессов, протекающих в экосистеме, и процессов ее развития, а также образ жизни человека. Энергия - общий знаменатель и исходная движущая сила всех экосистем, как сконструированных человеком, так и природных, следовательно, логично принять энергию за основу для "первичной классификации экосистем. Удобно выделить на этой основе четыре фундаментальных типа экосистем.
1. природные, движимые Солнцем, несубсидируемые;
2.
природные, движимые Солнцем,
субсидируемые другими
3.
движимые Солнцем и
4.
индустриально-городские,
Энергетическая классификация основана на свойствах среды на входе, она коренным образом отличается от биомной классификации, основанной на внутренней структуре экосистем, но вместе с тем и дополняет ее.
Природные системы, в основном или полностью зависящие от прямого солнечного излучения, можно назвать движимыми Солнцем несубсидируемыми экосистемами. Они совсем или почти не получают дополнительной энергии, помимо солнечного света. К числу таких экосистем можно отнести открытие океаны, крупные участки горных лесов, грасленды и большие глубокие озера. Часто на них накладываются и другие ограничения, например, нехватка элементов питания и воды. Поэтому хотя экосистемы этой обширной группы весьма различны, все они получают мало энергии (от 1000 - 10000 ккал·м-2·год-1) и имеют низкую продуктивность или способность выполнять работу. Организмы, живущие в таких системах, выработали замечательные адаптации к существованию на скудном пайке энергии и других ресурсов и к эффективному их использованию.
Хотя мощность природных экосистем, относящихся к первой категории, не очень впечатляет, и они не способны поддерживать высокую плотность населения, тем не менее такие экосистемы крайне важны, так как занимают огромные площади (одни лишь океаны - до 70 % площади земного шара). Весь комплекс движимых Солнцем природных экосистем крайне важен для человека, это по сути дела основной "модуль жизнеобеспечения", гомеостат, стабилизирующий и поддерживающий условия на "космическом корабле", имя которому Земля; именно здесь ежедневно очищаются большие объемы воздуха, возвращается в оборот вода, формируются климатические условия, измеряются крайности погоды и выполняется множество других полезных функций.
Если помимо солнечного света могут быть использованы какие-то дополнительные источники энергии, плотность мощности может быть значительно повышена, порой даже на порядок величины (10000 - 40000 ккал·м-2·год-1). В этом случае несолнечная энергия частично заменяет солнечную, сокращая расходы на самоподдержание системы и высвобождает солнечную энергию на производство органических веществ. Источники дополнительной энергии могут быть как естественными, так и искусственными. Для простоты классификации выделены категории: движимые Солнцем экосистемы с естественными и с искусственными энергетическими субсидиями.
Вспомогательная
энергия, увеличивающая продуктивность,
может поступать в самых
Человек также давно научился изменять природу и использовать вспомогательные источники энергии для получения прямой выгоды, а его умение не только увеличивать продуктивность, но и направлять эту продуктивность на производство пищевых и волокнистых материалов, легко собираемых, перерабатываемых и используемых, постоянно растет. Наземные и водные агроэкосистемы - основные примеры систем движимых Солнцем и субсидируемых человеком. Высокая продуктивность поддерживается большими поступлениями энергии топлива (а при более примитивных системах сельского хозяйства - мышечных усилий человека и животных). Эта энергия тратится на возделывание, орошение и удобрение, селекцию и борьбу с вредителями. Самое продуктивное сельское хозяйство находится примерно на уровне самых продуктивных природных экосистем: по-видимому, верхний предел для любой постоянной, длительно функционирующей системы, основанной на фотосинтезе, составляет примерно 50000 ккал·м-2·год-1. Действительное различие между природными и искусственными экосистемами состоит лишь в распределении этого потока энергии. Человек старается направить как можно больше энергии на производство продуктов питания, которые он может немедленно использовать, а природа обычно распределяет продукты фотосинтеза между многими видами и веществами и накапливает энергию "на черный день", это, так называемая, стратегия повышения разнообразия в целях выживания.
В экосистеме, движимой топливом высококонцентрированная потенциальная энергия топлива не просто дополняет, а заменяет солнечную энергию. При современных методах ведения городского хозяйства солнечная энергия в самом городе не только не используется, но становится дорогостоящей помехой, так как она нагревает бетон и способствует образованию смога. Важное свойство экосистем, движимых горючим - огромная потребность в энергии плотно населенных индустриально-городских районов, она по меньшей мере на 2-3 порядка больше того потока энергии, который поддерживает жизнь в естественных условиях. Килокалории энергии, ежегодно протекающие через квадратный метр индустриального города, исчисляется уже не тысячами, а миллионами ( 100000 - 3000000 ккал·м-2·год-1). Вот почему множество людей могут жить на небольшой территории.
Рассматривая
общую концепцию энергетических
субсидий надо сделать еще одно замечание,
фактор, который при одних условиях
среды или при одном уровне поступлений
увеличивает продуктивность, при других
условиях среды или другом уровне поступлений
может способствовать утечкам энергии,
уменьшая продуктивность. Слишком много
хорошего также вредит системе, как и слишком
мало. Например, некоторые виды загрязнений
- обработанные сточные воды, могут в зависимости
от объема и периодичности сброса оказаться
либо благоприятным фактором, либо источником
стресса. Если обработанные сточные воды
попадают в экосистему с постоянной умеренной
скоростью, то они, доставляя в систему
микроэлементы, могут способствовать
повышению продуктивности, однако массовый
их сброс через нерегулярные промежутки
времени может почти полностью уничтожить
систему как биологическую единицу.
Концепция градиента от субсидии до стресса.
Концепция
градиента от субсидии до стресса иллюстрируется
рис. 2. Если нарушение на входе вредно,
то реакция экосистемы должна быть отрицательной.
Но если на вход поступают полезные вещества
или энергия, то продуктивность (или другая
мера эффективности) может увеличиться:
такая экосистема и будет называться субсидируемой
экосистемой. При увеличении поступления
субсидий способность системы их усваивать
может достичь предела; эффективность
после этого снизится. Хорошая иллюстрация
соотношений между величиной субсидий
и стрессовым воздействием - реакция системы
на повышенное внесение азотных удобрений.
Рис.2.
Иллюстрация концепции
Лекция 5.
Пищевые цепи, пищевые сети и трофические уровни.
1. Принципы организации и типы пищевых цепей.
2. Компоненты "универсальной" модели экологического потока энергии.
3. Экологическая эффективность.
4. Концепция трофического уровня.
5.
Концепция поддерживающей
Мы
рассмотрели общий поток
Перенос энергии пищи от ее источника - автотрофов (растений) через ряд организмов, происходящий путем поедания одних организмов другими, называется пищевой цепью. Пищевые цепи можно разделить на два типа: пастбищная цепь, которая начинается с зеленого растения и идет далее к пасущимся растительноядным животным (т.е. к организмам, поедающим живые растительные клетки или ткани) и к хищникам (организмам, поедающим животных); и детритная цепь, которая от мертвого органического вещества идет к микроорганизмам, а затем к детритофагам и к их хищникам. Пищевые цепи не изолированы одна от другой, а тесно переплетаются друг с другом, образуя, так называемые, пищевые сети.
В сложных природных сообществах организмы, получающие свою энергию от Солнца через одинаковое число ступеней, считаются принадлежащими к одному трофическому уровню. Первый трофический уровень представлен первичными продуцентами или автотрофами; к ним относятся зеленые растения, которые способны использовать солнечный свет для образования химических соединений, богатых энергией. Первичные продуценты - это весьма важная часть сообщества, потому что практически все остальные организмы, входящие в его состав, прямо или косвенно зависят от снабжения энергией, запасенной растениями. Помимо первичных продуцентов в состав сообщества входят гетеротрофы, которые представлены консументами и деструкторами. Второй трофический уровень образуют растительноядные животные, называемые первичными консументами. Плотоядных, которые питаются растительно-травоядными называют вторичными консументами или первичными хищниками; они занимают третий трофический уровень. Хищники, питающиеся первичными хищниками, в свою очередь, образуют четвертый трофический уровень и называются третичными консументами или вторичными хищниками. Точно также животные, потребляющие вторичных хищников называются четвертичными консументами или третичными хищниками, они находятся на пятом трофическом уровне и т.д.
Эта
трофическая классификация
В
исследованиях структуры
Принцип организации пищевых цепей и действия двух законов термодинамики можно уяснить, рассмотрев схему переноса энергии на рис. 3. На этой схеме четырехугольники изображают трофические уровни, "трубы" - потоки энергии от каждого уровня или к нему. Как требует первый закон термодинамики, приток энергии уравновешивается ее оттоком, и каждый перенос энергии сопровождается ее рассеянием в форме недоступной для использования тепловой энергии (при дыхании), как того требует второй закон.
Рис.3. Упрощенная схема потока энергии, показывающая три трофическиих уровня (I, II и III ) в линейной пищевой цепи ( E.Odum, 1963.)
I
- общее поступление энергии; LA -
свет, поглощаемый растительным покровом;
PG - валовая первичная продуктивность
; А - общая ассимиляция; PN - чистая
первичная продукция; P2-3 - вторичная
продукция (консументов); NU- неиспользуемая
(накапливаемая или экспортируемая энергия);
NA- неассимилированная консументами (выделенная
с экскрементами) энергия; R - дыхание.
Представленная схема потоков энергии на трех трофических уровнях сильно упрощена. Но она позволяет ввести принятые в литературе обозначения разных потоков и ясно показывает, что на каждом последующем уровне поток энергии сильно уменьшается независимо от того, рассматривается ли общий поток (I - общий поток энергии и А - общая ассимиляция) или компоненты Р (продуктивность биомассы)и Р (дыхание). Показано, что на первом трофическом уровне поглощается около 50 % падающего света, а превращается в энергию пищи всего 1 % поглощенной энергии, а также "двойной метаболизм" продуцентов (т.е. валовая и чистая продукция). Вторичная продуктивность ( Р ) на каждом последующем трофическом уровне консументов составляет около 10 % предыдущей , хотя на уровне хищников эффективность может быть выше, скажем 20 %. Если питательная ценность источника энергии велика (например, продукт фотосинтеза, извлекаемый или выделяемой прямо из растительных тканей), то эффективность переноса энергии может быть гораздо выше. Но поскольку и растения, и животные производят, много трудноперевариваемого вещества (целлюлоза, лигнин, хитин), а также химические ингибиторы, препятствующие поеданию различными консументами, средняя эффективность переноса энергии между трофическими уровнями в целом составляет 20 % и менее.