Автор работы: Пользователь скрыл имя, 08 Сентября 2011 в 20:09, курс лекций
Лекция 1. Краткая история и предмет экологии.
Лекция 2. Экологическая система. Принципы и концепции.
Лекция 3. Энергия в экологических системах.
Лекция 4. Энергия и продуктивность.
Лекция 5. Пищевые цепи, пищевые сети и трофические уровни.
Лекция 6. Трофическая структура и трофическая функция экосистемы.
Лекция 7. Биосфера как глобальная экосистема.
Лекция 8. Биогеохимические циклы
Лекция 9. Круговороты основных биогенных элементов:
глобальный круговорот воды и углерода.
Лекция 10. Круговороты основных биогенных элементов:
круговорот кислорода.
Лекция 11. Круговороты азота и серы .
Лекция 12. Осадочный цикл .
Лекция 13. Пути возвращения веществ в круговорот: коэффициент возврата.
Лекция 14. Воздействие среды обитания на биоту.
Лекция 15. Абиотические факторы среды обитания.
Лекция 16. Биотические отношения и роли видов в экосистеме.
Лекция 17. Развитие и эволюция экосистемы.
Деление
ступенчатого ряда, или иерархии, на
компоненты во многих случаях искусственно,
(например, системы “хозяин-паразит”
или двухвидовая система взаимосвязанных
организмов (сожительство гриба и водоросли,
образующее лишайник) представляют собой
промежуточные уровни между популяцией
и сообществом) но иногда такое деление
может быть основано на естественных разрывах.
Так как каждый уровень в спектре
биосистемы «интегрирован», т.
е. взаимосвязан с другими уровнями, здесь
нельзя найти резких границ или разрывов
в функциональном смысле. Их нет даже между
организмом и популяцией. Например, организм,
изолированный от популяции, не в состоянии
жить долго, точно так же, как изолированный
орган не может длительное время сохраняться
как самоподдерживающаяся единица
без своего организма. Подобным же образом
сообщество не может существовать, если
в нем не происходит круговорот веществ
и в него не поступает энергия. Тот же аргумент
можно привлечь для опровержения неверного
представления о том, будто бы человеческая
цивилизация может существовать независимо
от мира природы.
Принцип эмерджентности.
Важное
следствие иерархической
Для иллюстрации принципа эмерджентности приведем два примера, один из химии, другой из экологии. Водород и кислород, соединяясь в определенном соотношении, образуют воду, жидкость, совершенно непохожую по своим свойствам на исходные газы. А определенные водоросли и кишечнополостные животные, эволюционируя совместно, образуют систему кораллового рифа, возникает эффективный механизм круговорота элементов питания, позволяющий такой комбинированной системе поддерживать высокую продуктивность в водах с очень низким содержанием этих элементов. Следовательно, фантастическая продуктивность и разнообразие коралловых рифов - эмерджентные свойства, характерные только для уровня рифового сообщества.
При каждом объединении подмножеств в новое множество возникает по меньшей мере одно новое свойство; предлагается различать эмерджентные свойства, определение которых дано выше, и совокупные свойства, представляющие собой сумму свойств компонентов. И те и другие - свойства целого, но совокупные свойства не включают новых или уникальных особенностей, возникающих при функционировании системы как целого. Рождаемость - пример совокупного свойства, поскольку она представляет собой лишь сумму индивидуальных рождений за определенный период, выраженную в виде доли или процента общего числа особей в популяции. Эмерджентные свойства возникают в результате взаимодействия компонентов, а не в результате изменения природы этих компонентов. Части не «сплавляются», а интегрируются, обусловливая появление уникальных новых свойств.
Некоторые признаки, естественно, становятся более сложными и изменчивыми, когда по иерархии уровней организации (рис. 1.) продвигаешься слева направо, другие же, напротив, часто становятся менее сложными и менее изменчивыми. Поскольку на всех уровнях функционируют гомеостатические механизмы, а именно корректирующие и уравновешивающие процессы, действующие и противодействующие силы, амплитуда колебаний имеет тенденцию уменьшаться, когда мы переходим к рассмотрению более мелких единиц, функционирующих внутри крупных. Статистически разброс значений целого меньше суммы разброса частей. Например, интенсивность фотосинтеза лесного сообщества менее изменчива, чем интенсивность фотосинтеза у отдельных листьев или деревьев внутри сообщества; объясняется это тем, что если в одной части интенсивность фотосинтеза снижается, то в другой возможно его компенсаторное усиление. Если учесть эмерджентные свойства и усиление гомеостаза на каждом уровне, то станет ясно, что для изучения целого не обязательно знать все его компоненты. Это важный момент, поскольку некоторые исследователи считают, что не имеет смысла пытаться изучать сложные популяции и сообщества, не изучив досконально составляющие его более мелкие единицы. Напротив, изучение можно начать с любой точки спектра при условии, что учитывается не только изучаемый, но и соседние уровни, поскольку, как уже было сказано, некоторые свойства целого можно предсказать, исходя из свойств его частей (совокупные свойства), другие же нельзя (эмерджентные свойства). Идеальное изучение какого-либо уровня системы включает изучение трехчленной иерархии: системы, подсистемы (соседний низший уровень) и надсистемы (следующий верхний уровень).
В соответствии со сказанным мы будем обсуждать принципы экологии на уровне экосистемы, уделяя достаточно внимания таким под системам , как популяция и сообщество, и такой надсистеме, как биосфера.
Лекция 2.
Экологическая система. Принципы и концепции.
1. Концепция экосистемы.
2. Изучение экосистем.
3.
Стабильность экосистем.
Если
мы хотим, чтобы наше общество перешло
к целостному решению проблем, возникающих
на уровне биомов и биосферы, то должны
прежде всего изучать экосистемный уровень
организации.
Концепция экосистемы
Живые организмы и их неживое (абиотическое) окружение неразделимо связаны друг с другом и находятся в постоянном взаимодействии. Любая биосистема, включающая все совместно функционирующие организмы (биотическое сообщество) на данном участке и взаимодействующая с физической средой таким образом, что поток энергии создает четко определенные биотические структуры и круговорот веществ между живой в неживой частями, представляет собой экологическую систему или экосистему.
Долговременное функционирование экосистемы обеспечивают три основных компонента - сообщество, поток энергии и круговорот веществ.
Поток энергии направлен в одну сторону; часть поступающей солнечной энергии преобразуется сообществом и переходит на качественно более высокую ступень, трансформируясь в органическое вещество, представляющее собой более концентрированную форму энергии, чем солнечный свет, но большая часть энергии деградирует, проходит через систему и покидает ее в виде низкокачественной тепловой энергии (тепловой сток). Энергия может накапливаться, затем снова высвобождаться или экспортироваться но ее нельзя использовать вторично.
В отличие от энергии элементы питания, в том числе биогенные элементы, необходимые для жизни (углерод, азот, фосфор и т. д.), и вода не только могут, но и должны использоваться многократно.
Все экосистемы, даже самая крупная - биосфера, являются открытыми системами: они должны получать и отдавать энергию. Разумеется, экосистемы, входящие в биосферу, также в разной степени открыты для потоков веществ, для иммиграции и эмиграции организмов. Поэтому концепция экосистемы должна учитывать существование связанных между собой и необходимых для функционирования и самоподдержания экосистемы среды на входе и среды на выходе: в концептуально законченную экосистему входит среда на входе, среда на выходе и система , т.е.
Экосистема = IE + S + OE.
Данная
схема решает проблему, связанную с
проведением границ рассматриваемой единицы,
поскольку в этом случае не имеет значения,
как мы вычленяем исследуемую часть экосистемы.
Часто удобными оказываются естественные
границы, например берег озера или опушка
леса, или административные, например
границы города, но эти границы могут быть
и условными, если их точно определить
геометрически. Конечно, экосистема не
ограничена «ящиком» в центре схемы, поскольку
если бы этот «ящик» был герметичным, то
его живое содержимое (озеро или город)
не вынесло бы такого заключения. Функционирующая
реальная экосистема должна иметь вход
и в большинстве случаев пути оттока переработанной
энергии и веществ.
Изучение экосистем
При изучении больших сложных экосистем, таких, как озера и леса, экологи используют четыре основных подхода:
1) холистический (от греч. holos - целый) , который предполагает измерение поступлений и выхода энергии и различных веществ, оценку совокупных и эмерджентных свойств, а затем в случае необходимости - изучение его составных частей; экосистема рассматривается как черный ящик, т. е. как объект, функция которого может быть описана без выяснения его внутреннего содержания.
2) мерологический (от греч. meros - часть), при котором сначала изучаются свойства основных частей, а затем эти сведения экстраполируются на систему в целом. Очевидно, что важные эмерджентные свойства при мерологическом подходе могут быть упущены. Но, что самое главное, конкретный организм в разных системах может вести себя совершенно по-разному, и эта изменчивость, очевидно, связана с тем, как данный организм взаимодействует с другими компонентами экосистемы. Например, многие насекомые в агроэкосистеме являются опасными вредителями, а в своих естественных местообитаниях они не опасны, так как там их держат под контролем паразиты, конкуренты, хищники пли химические ингибиторы.
3)
экспериментальные методы, т.е. нарушение
тем или иным способом
4)
методы моделирования. Модель-
Моделирование обычно начинают с построения схемы, или графической модели, часто представляющей собой блок-схему. В работающей модели экологической ситуации имеется как минимум четыре ингредиента или компонента, а именно: 1) источник энергии или другая внешняя движущая сила, 2) свойства, которые системоаналитики называют переменными состояний, 3) направления потоков, связывающих «действа между собой и с действующими силами через потоки энергии и вещества; и 4) взаимодействия или функции взаимодействий там, где взаимодействуют между собой силы и свойства, изменяя, усиливая или контролируя перемещения веществ и энергии или создавая эмерджентные свойства.
Характеристика
хорошей модели должна включать три
компонента: 1) анализируемое пространство
(границы системы), 2) субсистемы (компоненты),
считающиеся важными для общего функционирования,
и 3) рассматриваемый временной интервал.
После того как мы правильно определили
экосистему, экологическую ситуацию или
проблему и установили ее границы, мы выдвигаем
доступную для проверки гипотезу или серию
гипотез, которую можно принять или отвергнуть
хотя бы предварительно, ожидая результатов
дальнейших экспериментов или анализа.
Более подробные сведения об экологическом
моделировании можно найти в работах Холла
и Дэя (1979), а также Медоуза (1982).
Стабильность экосистем
Стабильность экосистемы обеспечивается непрерывным потоком энергии, который задает и поддерживает круговороты веществ; а также развитыми информационными сетями, включающими потоки физических и химических сигналов, связывающих все части системы и управляющих (или регулирующих) ею как одним целым. В результате взаимодействия круговоротов веществ и потоков энергии, а также сигналов обратной связи от субсистем (когда часть сигналов с выхода поступает на вход) в экосистемах возникает саморегулирующийся гомеостаз без регуляции извне ( как это бывает в механических системах; например, в обычной системе регулировки температуры в помещении термостат управляет печью) или «постоянной точки» ( так у теплокровных животных регуляция температуры тела осуществляется специальным центром в мозгу). Управляющие функции экосистемы сосредоточены внутри нее и диффузны (а не направлены вовне и специализированы). В число управляющих механизмов, действующих на уровне экосистемы, входят микробные субсистемы, регулирующие накопление и высвобождение биогенных элементов, поведенческие механизмы и субсистемы «хищник-жертва», регулирующие плотность популяции, а также многие другие.