Автор работы: Пользователь скрыл имя, 08 Сентября 2011 в 20:09, курс лекций
Лекция 1. Краткая история и предмет экологии.
Лекция 2. Экологическая система. Принципы и концепции.
Лекция 3. Энергия в экологических системах.
Лекция 4. Энергия и продуктивность.
Лекция 5. Пищевые цепи, пищевые сети и трофические уровни.
Лекция 6. Трофическая структура и трофическая функция экосистемы.
Лекция 7. Биосфера как глобальная экосистема.
Лекция 8. Биогеохимические циклы
Лекция 9. Круговороты основных биогенных элементов:
глобальный круговорот воды и углерода.
Лекция 10. Круговороты основных биогенных элементов:
круговорот кислорода.
Лекция 11. Круговороты азота и серы .
Лекция 12. Осадочный цикл .
Лекция 13. Пути возвращения веществ в круговорот: коэффициент возврата.
Лекция 14. Воздействие среды обитания на биоту.
Лекция 15. Абиотические факторы среды обитания.
Лекция 16. Биотические отношения и роли видов в экосистеме.
Лекция 17. Развитие и эволюция экосистемы.
2. Важная, если не главная роль транспирации растений в общей эвапотранспирации (испарении) с суши. Влияние, оказываемое растительностью на движение воды, выявляется лучше всего при удалении растительности. Так экспериментальная вырубка всех деревьев в бассейнах небольших рек увеличивает сток воды в реки, дренирующие расчищенные участки, более чем на 200%. В нормальных условиях этот излишек в виде водяного пара траспирировался бы непосредственно в атмосферу.
3.
Хотя поверхностный сток пополняет резервуары
грунтовых вод и сам пополняется от них,
эти величины имеют обратную зависимость.
В результате деятельности человека (покрытия
земной поверхности непроницаемыми для
воды материалами, создания водохранилищ
на реках, строительства оросительных
систем, уплотнения пахотных земель, сведения
лесов и т.д.) сток увеличивается и пополнение
столь важного фонда грунтовых вод сокращается.
Во многих засушливых районах резервуары
грунтовых вод сейчас быстрее выкачиваются
человеком, чем пополняются природой.
Глобальный круговорот углерода.
В
биологическом круговороте
Обширные фонды углерода неорганического происхождения - атмосферный диоксид углерода, растворенный диоксид углерода (главным образом в форме HCO3-), угольная кислота и карбонатные отложения - участвуют в круговороте углерода в различной степени . Обмен между углеродом, содержащимся в изверженных породах, отложениях карбоната кальция, каменном угле и нефти, и другими более активными его фондами происходит настолько медленно, что влияние этого углерода на краткосрочное функционирование экосистем незначительно.
В круговороте СО2 атмосферный фонд очень невелик, в сравнении с запасами углерода в океанах, в ископаемом топливе и других резервуарах земной коры. Полагают, что до наступления индустриальной эры потоки углерода между атмосферой, материками и океанами были сбалансированы.
В
основе этого баланса лежит
Фотосинтезирующий "зеленый пояс" Земли и карбонатная система моря поддерживают постоянный уровень содержания СО2 в атмосфере. Но в последнем столетии стремительно возрастающее потребление горючих ископаемых вместе с уменьшением поглотительной способности "зеленого пояса" начинает превосходить возможности природного контроля, так что содержание СО2 в атмосфере, сейчас постепенно возрастает. Действительно, наибольшим изменениям подвержены потоки веществ на входе и на выходе небольших обменных фондов. Полагают, что в начале промышленной революции (примерно 1800 г.) в атмосфере Земли содержалось около 290 частей СО2 на миллион (0,029 %). В 1958 г., когда были впервые проведены точные измерения, содержание составило 315, а в 1960 г. оно выросло до 335 частей на миллион. Если концентрация вдвое превысит доиндустриальный уровень, что может случишься к середине будущего века, вероятно потепление климата Земли: температура в среднем повысится на 1,5 - 4,5°С, и это наряду с подъемом уровня моря (в результате таяния полярных шапок) и изменением распределения осадков может погубить сельское хозяйство.
Считают, что в следующем веке может установиться новое, но ненадежное равновесие между увеличением содержания СО2 (способствующего разогреву Земли) и усилением загрязнения атмосферы пылью и другими частицами, отражающими излучение и этим охлаждающими планету. Любое значительное результирующее изменение теплового бюджета Земли тогда повлияет на климат.
Основным источником поступления "парникового газа" СО2 считается сжигание горючих ископаемых, однако свой вклад вносят также развитие сельского хозяйства и сведение лесов. Может показаться удивительным, что сельское хозяйство в конечном счете приводит к потере СО2 из почвы (то есть вносит в атмосферу больше, чем забирает оттуда), но дело в том, что фиксация СО2 сельскохозяйственными культурами, многие из которых активны лишь часть года, не компенсирует количества СО2, высвобождающееся из почвы, особенно в результате частой вспашки. Леса - важные накопители углерода, так как в биомассе лесов содержится в 1,5 раза, а в лесном гумусе - в 4 раза больше углерода, чем в атмосфере. Сведение леса, разумеется, может высвободить углерод, накопленный в древесине, особенно если она немедленно сжигается. Уничтожение леса, особенно при последующем использовании этих земель для сельского хозяйства или строительства городов, приводит к окислению гумуса.
Кроме СО2 в атмосфере присутствуют в небольших количествах еще два соединения углерода: оксид углерода (СО)- примерно 0,1 части на миллион и метан (СH4) - около 1,6 части на миллион. Как и СО2 , эти соединения находятся в быстром круговороте и поэтому имеют небольшое время пребывания в атмосфере - около 0,1 года для СО; 3,6 года для СH4 и 4 года для СО2.
И СО, и СH4 образуются при неполном или анаэробном разложении органического вещества; в атмосфере оба окисляются до СО2. Столько же СО , сколько попадает в атмосферу в результате естественного разложения, вносится в нее сейчас при неполном сгорании горючих ископаемых, особенно с выхлопными газами. Накопление монооксида углерода - этого смертельного яда для человека - в глобальном масштабе не представляет собой угрозы, но в городах, где воздух застаивается, повышение концентрации этого газа в атмосфере начинает становиться угрожающим, достигая 100 частей на миллион.
Производство метана - одна из важнейших функций водно-болотистых угодий и мелководных морей мира. Метан, как полагают, имеет полезную функцию: он поддерживает стабильность озонного слоя в верхней атмосфере, который блокирует смертельно опасное ультрафиолетовое излучение Солнца.
Лекция 10.
Круговороты основных биогенных элементов.
1. Круговорот кислорода.
2.
Типы фотосинтеза и организмов-
3.
Типы катаболизма и организмов-
4.
Общий баланс процессов продукции и
разложения.
Круговорот кислорода .
Вторым по содержанию в атмосфере после азота является кислород, составляющий 20,95% ее по объему. Гораздо большее его количество находится в связанном состоянии в молекулах воды, в солях, а также в оксидах и других твердых породах земной коры, однако к этому огромному фонду кислорода экосистема не имеет непосредственного доступа. Время переноса кислорода в атмосфере составляет около 2500 лет, если пренебречь обменом кислорода между атмосферой и поверхностными водами.
Механизм
круговорота кислорода
Типы фотосинтеза и организмов-продуцентов.
С химической точки зрения процесс фотосинтеза включает запасание части энергии солнечного света в виде потенциальной энергии пищи. Общее уравнение окислительно-восстановительной реакции можно записать следующим образом:
СО2 +2 H2A « {СН2O} + H2О +2A
окисление описывается уравнением:
H2A - 2e- ® 2H+ +A;
а восстановление :
СО2 +4H+ + 4e- ® {СН2O}+ H2О.
Для зеленых растений (водорослей, высших растений) А - это кислород; вода окисляется с высвобождением газообразного кислорода, а диоксид углерода восстанавливается до углеводов ({СН2O}) с высвобождением воды. Такой тип фотосинтеза носит название "нормального фотосинтеза".
При бактериальном фотосинтезе, напротив, H2A - восстановитель - не вода, а либо неорганическое соединение серы, например сероводород H2S, как у зеленых и пурпурных серобактерий, либо органическое соединение, как у пурпурных и бурых несерных бактерий. Соответственно при бактериальном фотосинтезе этих типов кислород не выделяется.
Фотосинтезирующие бактерии в основном водные морские и пресноводные организмы; в большинстве случаев они играют незначительную роль в продукции органического вещества. Но они способны функционировать в условиях, в общем неблагоприятных для большинства зеленых растений, и в водных отложениях участвуют в круговороте некоторых элементов. Бактериальный фотосинтез может быть полезен в загрязненных и эвтрофных (кормных) водах, восстановленных зонах с ограниченным доступом света, в стоячих озерах, богатых сероводородом, где на его долю может приходиться до 30% общей продукции.
Установлено, что у высших растений существуют разные биохимические механизмы восстановления диоксида углерода до углеводов, сопровождающегося выделением кислорода. У большинства растений фиксация диоксида углерода идет по С3- пентозофосфатному пути, или циклу Кальвина. Иной путь - по циклу С4 - дикарбоновых кислот. При обсуждении экологических последствий этих особенностей растения в соответствии с характером протекающих у них процессов фотосинтеза называют С3-растениями или С4-растениями. Эти растения по-разному реагируют на свет, температуру и воду. У первых максимальная интенсивность фотосинтеза (на единицу поверхности листа) обычно наблюдается при умеренных освещенности и температуре, а высокие температуры и яркий солнечный свет подавляют фотосинтез. Напротив, С4-растения адаптированы к яркому свету и высокой температуре и в таких условиях значительно превосходят по продуктивности С3-растения. Кроме того, они более эффективно используют воду: как правило, на производство 1 г сухого вещества им требуется менее 400 г воды, а С3- -растениям - от 400 до 1000 г воды. К тому же фотосинтез у С4-растений не ингибируется высокими концентрациями кислорода, как это происходит у С3-видов. Одна из причин того, что С4-растения более эффективны у верхних пределов световой и температурной шкал, состоит в том, что у них невелико фотодыхание, т.е. при увеличении освещенности продукты фотосинтеза не тратятся на дыхание.
Хотя в пересчете на площадь листвы эффективность фотосинтеза у С3-растений ниже, эти растения создают большую часть фотосинтетической продукции мира, возможно потому, что они более конкурентноспособны в смешанных сообществах, где растения затеняют друг друга и где освещенность, температура и другие показатели ближе к средним значениям, чем к предельным. Это еще один хороший пример принципа эмерджентности. Выживание наиболее приспособленных в реальном мире - не всегда выживание видов, физиологически более эффективных в оптимальных условиях в монокультуре; чаще выживают виды, преуспевающие в смешанной культуре в изменчивых и не всегда оптимальных условиях. Иными словами, то, что эффективно в изоляции, не обязательно эффективно в сообществе, где на естественный отбор сильно влияют межвидовые взаимодействия.
Как и следовало ожидать, С4- виды преобладают среди растительности пустынь и степей в теплом и тропическом климате и редки в лесах и на севере, где освещенность и температура низкие.
Недавно был открыт еще один способ фотосинтеза, приспособленный к условиям пустынь и получивший название САМ - метаболизм (кислотный метаболизм толстенковых). У некоторых жителей пустыни, в том числе кактусов, устьица на протяжении жаркого дня закрыты и открываются только прохладной ночью. Диоксид углерода, поглощаемый через устьица, накапливается в форме органических кислот и фиксируется в углеводах только на следующий день. Такая задержка фотосинтеза значительно уменьшает дневные потери воды, усиливая этим способность растений сохранять водный баланс и запасы воды.
Микроорганизмы, которых называют хемосинтезирующими бактериями, относят к хемолитотрофам, потому что они получают энергию для включения диоксида углерода в состав компонентов клетки не за счет фотосинтеза, а в результате химического окисления простых неорганических соединений, например аммиака (в нитрит), нитрита (в нитрат), сульфида (в серу), двухвалентного железа (в трехвалентное). Такие микроорганизмы могут расти в темноте, но большинству из них нужен кислород. В качестве примера можно привести различные азотные бактерии, играющие важную роль в круговороте азота. Благодаря способности функционирования в отсутствие света - в осадках, почве и на дне океанов- хемосинтезирующие бактерии не только играют роль в извлечении минеральных питательных веществ, они используют энергию, которая иначе была бы недоступна консументам.
Большинство высших (семенных) растений и многие виды водорослей используют только простые неорганические вещества и, следовательно, являются полностью автотрофными. Но некоторые водоросли нуждаются в каком-то одном (определенном) сложном органическом "ростовом веществе", которое они сами не способны синтезировать. Другие виды нуждаются в двух, трех или многих таких "ростовых веществах" и, следовательно, являются частично гетеротрофными; организмы, занимающие промежуточное положение между автотрофами и гетеротрофами, называются ауксотрофными.