Автор работы: Пользователь скрыл имя, 08 Сентября 2011 в 20:09, курс лекций
Лекция 1. Краткая история и предмет экологии.
Лекция 2. Экологическая система. Принципы и концепции.
Лекция 3. Энергия в экологических системах.
Лекция 4. Энергия и продуктивность.
Лекция 5. Пищевые цепи, пищевые сети и трофические уровни.
Лекция 6. Трофическая структура и трофическая функция экосистемы.
Лекция 7. Биосфера как глобальная экосистема.
Лекция 8. Биогеохимические циклы
Лекция 9. Круговороты основных биогенных элементов:
глобальный круговорот воды и углерода.
Лекция 10. Круговороты основных биогенных элементов:
круговорот кислорода.
Лекция 11. Круговороты азота и серы .
Лекция 12. Осадочный цикл .
Лекция 13. Пути возвращения веществ в круговорот: коэффициент возврата.
Лекция 14. Воздействие среды обитания на биоту.
Лекция 15. Абиотические факторы среды обитания.
Лекция 16. Биотические отношения и роли видов в экосистеме.
Лекция 17. Развитие и эволюция экосистемы.
В
глобальном масштабе эволюционно
наиболее развитые формы жизни можно четко
разделить на автотрофов и
гетеротрофов, причем для выживания последних
необходим газообразный кислород. Но многие
виды и штаммы низших микроорганизмов
- бактерий, грибов, низших водорослей
и простейших - не столь специализированы,
они приспособлены к промежуточному способу
существования и могут с автотрофии
переключаться на гетеротрофию,
жить в присутствии и в отсутствии кислорода.
Типы катаболизма и организмов-разрушителей.
Катаболизм (разложение) органических остатков - длительный и сложный процесс, контролирующий несколько важных функций экосистемы. В результате этого процесса:
1) возвращаются в круговорот элементы питания, находящиеся в мертвом органическом веществе;
2) производится пища для последовательного ряда организмов в детритной пищевой цепи;
3) производятся вторичные метаболиты ингибирующего, стимулирующего и часто регулирующего действия;
4) образуются хелатные комплексы с элементами питания;
5)
преобразуются инертные
6) поддерживается состав атмосферы, способствующий жизни крупных аэробов, таких, как человек.
Если рассматривать разложение в широком смысле слова, как "любое биологическое окисление, дающее энергию", то с учетом потребности в кислороде можно выделить несколько типов этого процесса, приблизительно аналогичных типам фотосинтеза:
1. Аэробное дыхание - окислителем (акцептором электронов) служит газообразный молекулярный кислород (тип 1 );
2.
Анаэробное дыхание протекает
без участия газообразного
3.
Брожение тоже анаэробный
Аэробное дыхание (тип 1) - процесс обратный "нормальному фотосинтезу"; в этом процессе синтезированное органическое вещество {СН2O} вновь разлагается с образованием СО2 и H2О и с высвобождением энергии. Все высшие растения и животные и большинство микроорганизмов получают энергию для поддержания жизнедеятельности и построения клеток именно с помощью этого процесса. В итоге завершенного дыхания образуются СО2, вода и вещества клетки; однако процесс может идти не до конца, и в результате такого незавершенного дыхания образуются органические соединения, еще содержащие некоторое количество энергии, которая в дальнейшем может быть использована другими организмами (процессы 2 и 3).
Бескислородное дыхание служит основой жизнедеятельности главным образом у сапрофагов (бактерии, дрожжи, плесневые грибы, простейшие), хотя, как звено метаболизма, оно может встречаться и в некоторых тканях высших животных. Хороший пример облигатных анаэробов - метановые бактерии, которые разлагают органические соединения, образуя метан путем восстановления, либо органического углерода, либо углерода карбонатов. Таким образом, дыхание у них может происходить по типам 2 и 3.
К общеизвестным организмам, использующим брожение (тип 4), относятся дрожжи; они имеют большую практическую ценность для человека, но, кроме того, в изобилии встречаются в почве, где играют ключевую роль в разложении растительных остатков.
Многие
группы бактерий (например факультативные
анаэробы) способны и к аэробному и к анаэробному
дыханию. Однако конечные продукты этих
двух процессов различны, и количество
высвобождающейся энергии при анаэробном
дыхании значительно меньше.
Общий баланс процессов продукции и разложения
Каждый год фотосинтезирующими организмами на Земле создается около 100 млрд. т. органического вещества. За этот промежуток времени приблизительно такое же количество живого вещества окисляется, превращаясь в СО2 и воду в результате дыхания организмов. Однако этот баланс неточен. Для биосферы в целом важнейшее значение имеет отставание процесса полной гетеротрофной утилизации и разложения продуктов автотрофного метаболизма от процесса их создания, поскольку именно отставание обусловило накопление в недрах горючих ископаемых, а в атмосфере - кислорода. В этой связи крайнюю озабоченность вызывает деятельность человека, который хотя и ненамеренно, но очень значительно ускоряет процессы разложения.
Лекция 11.
Круговороты азота и серы.
1. Круговорот азота.
2.
Круговорот серы.
Круговорот азота.
Круговорот
азота - пример очень сложного и хорошо
забуференного круговорота
Путь
прохождения азота через
Содержание азота в живых тканях составляет чуть больше 3 % содержания его в активных фондах экосистемы; остальной азот распределен между детритом и нитратами, содержащимися в почве и океане. Кроме того, относительно небольшие количества азота находятся на промежуточных стадиях разложения белка - в виде аммиака и нитритов (табл. 3). Растения ежегодно ассимилируют 86·1014 г азота - менее 1 % активного фонда, поэтому общее время круговорота азота превышает 100 лет.
При круговороте азота происходит поэтапный распад органических соединений, в котором участвует много разных организмов и в результате которого азот в конечном счете переходит в нитратную форму.
Из всех доступных растениям форм, в каких азот содержится в почве, наиболее желательной является аммиак (NН3) или ион аммония (NН4+), потому что их превращение в органические соединения требует минимальных химических перестроек. Аммиак, однако, не может служить источником азота в почве потому, что в высоких концентрациях он токсичен для растительных тканей, и также потому, что он не удерживается в почве. Аммиак легко растворяется в воде и быстро вымывается из почвы. В кислых почвах аммиак превращается в ион аммония. Этот положительно заряженный ион в результате электростатического взаимодействия может присоединяться к поверхности глинисто-гумусовой мицеллы, однако он легко вытесняется в кислых почвах ионами водорода и тем самым тоже довольно легко вымывается водой. Некоторые глинистые минералы просто адсорбируют ионы аммония, включая их в свою кристаллическую решетку, и притом так прочно, что эти ионы не поддаются вымыванию и тем самым становятся недоступными для растений. Тот аммиак, который избежал вымывания из почвы, подвергается действию специализированных бактерий, извлекающих энергию путем окисления азота аммиака до нитритов (NО2-) и нитратов (NO3-). Отрицательно заряженные нитрит- и нитрат-ионы совершенно не связываются с частицами глины, а поэтому легко вымываются. Образовавшиеся в почве нитраты быстро ассимилируются корнями растений. В наземных экосистемах главные запасы азота представляет азот, входящий в состав органического детрита. В водных экосистемах азот содержится главным образом в виде растворенных нитратов.
Таблица 3.
Распределение азота между активными фондами и годовые скорости переноса
(все
фонды содержат в сумме около
1018 г азота )
Фонд | Азот, % | Скорость переноса за год, % |
Органические
формы Растения Животные Детрит Неорганические
формы в почвах и океанах Аммиак (NН4+ в пересчете на NН3) Нитриты (NО2-) Нитраты (NO3-) |
11 11 6100 286 138 4180 |
25 1,4 30 63 2,1 |
Биохимические превращения азотсодержащих соединений чрезвычайно разнообразны, потому что азот может соединяться с другими элементами несколькими различными способами. Наиболее важные процессы в круговороте азота - это распад органических азотсодержащих соединений в результате аммонификации и нитрификации, восстановление нитратов и нитритов до молекулярного азота (N2) в результате денитрификации и его высвобождение в атмосферу, а также процесс биологической ассимиляции атмосферного азота путем его фиксации.
В процессе денитрификации азот удаляется из активных фондов почвы и поверхностных слоев воды и попадает в атмосферу; в результате же процесса фиксации атмосферный азот возвращается в активный круговорот, происходящий в экосистеме. Эти процессы представляются второстепенными по сравнению с общим круговоротом азота в экосистеме, однако в тех местах, где содержание азота в почве недостаточно для нормального роста растений, фиксация азота нередко приобретает важное значение .
В органических соединениях азот обычно представлен амино- или какой-либо родственной группой, входящей в состав той или иной органической молекулы. У животных выведение из организма избыточного азота происходит путем отщепления аминов от органических соединений и выделения их в сравнительно неизменной форме, главным образом в виде аммиака (NН3) или мочевины СО(NH2)2. Почвенные микроорганизмы легко превращают мочевину в аммиак путем гидролиза:
СО(NH2)2 + H2O ® 2 (NН3) + CO2
Эта реакция, однако, не сопровождается высвобождением энергии, которая могла бы использоваться для выполнения каких-либо биологических функций.
Некоторые специализированные, и повсеместно встречающиеся бактерии могут высвобождать химическую энергию, содержащуюся в аминогруппе, в результате ряда реакций нитрификации, для которых необходим кислород. Nitrosomonas превращает ион аммония в нитрит; Nitrobacter завершает процесс нитрификации, окисляя нитрит до нитрата.
Нитрификация представляет собой решающий этап в круговороте азота, так как она в конечном счете определяет скорость, с которой азот переходит в форму, доступную зеленым растениям, и тем самым оказывает влияние на продуктивность местообитания. Любые почвенные условия, подавляющие активность бактерий, - высокая кислотность и плохая аэрация почвы, низкая температура и недостаток влаги - подавляют также и нитрификацию. Медленное поступление в почву биогенных элементов, характерное для холодных и засушливых условий, может, в дополнение к непосредственному воздействию этих факторов на фотосинтез, еще больше снижать продуктивность растений. Кроме того, если содержание азота в органическом детрите невелико по сравнению с содержанием в нем углерода, то бактерии расходуют весь этот азот на построение своих клеток, а не используют его в качестве субстрата для метаболизма. В результате азот оказывается связанным в биомассе бактерий, вместо того, чтобы стать доступным растениям.
Денитрификация, в процессе которой нитраты превращаются в азот, происходит в несколько этапов:
NO3- ® NО2- ® N2O ® N2,
причем на каждом из этих этапов выделяется кислород. (Бактерия Pseudomonas добывает с помощью этого процесса необходимый для дыхания кислород при отсутствии в почве свободного кислорода). Оксид азота (N2O) и молекулярный азот (N2 ) выделяются в атмосферу и, тем самым, исключаются из фондов активного азота. Денитрификация может происходить также чисто химическим путем, без участия микроорганизмов. Например, в кислых почвах происходит реакция: