Исследование аварийной экотоксикологической ситуации и меры по ее устранению (хром).

Автор работы: Пользователь скрыл имя, 12 Июня 2013 в 09:37, курсовая работа

Описание работы

Токсичность шестивалентного хрома проявляется в подавлении роста, в торможении метаболических процессов, в виде генотоксического, эмбриотоксического и тератогенного эффектов. При воздействии на людей выделяют легочную и желудочную формы интоксикации. Отмечаются различные дерматиты, аллергические реакции, раздражение верхних дыхательных путей. Многочисленными эпидемиологическими исследованиями установлено, что хроматы могут вызывать бронхогенный рак, поэтому хром и его соединения относят к группе высокого канцерогенного риска для человека.

Содержание работы

Введение
Глава 1 Общая характеристика токсиканта. Нахождение в природе
Происхождение
Получение
Физические свойства
Химические свойства
Глава 2 Гигиенические параметры токсикантов
Глава 3 Подходы к отбору проб
Порядок отбора проб пищевых продуктов
Определение тяжелых металлов в почвах сельскохозяйственных угодий, продукции растениеводства и кормах
Отбор проб почвы и растений при общих и локальных загрязнениях
Глава 4 Аналитические методы определения токсиканта в образцах
Критерии оценки методов определения остатков токсических веществ
Глава 5 Выбор вида индикатора
Глава 6 Токсикологические методы оценки воздействия присутствующей дозы токсиканта на компоненты биоты
Выводы и предложения
Список литературы

Файлы: 1 файл

Исследование аварийной экотоксикологической ситуации и меры по ее устранению хром .doc

— 250.00 Кб (Скачать файл)

При любом способе  выделения токсического вещества в  экстракт переходит значительное количество примесей, мешающих распределению: жиры, пигменты, воск, белки, соли и др. Для освобождения экстракта от этих веществ используют различные способы очистки: путем омыления, вымораживания, осаждения, перераспределения из одного органического растворителя в другой с помощью специальных колонок и др. Последние зависят от вида анализируемого соединения и субстрата, в котором он находится.

Для того чтобы повысить чувствительность метода анализа, экстракты  концентрируют до небольшого объема, достаточного для проведения исследований данным методом. Обычно конечные объемы экстрактов составляют 0,5–5 мл. Для концентрирования используют специальные аппараты Кудерна–Данича, вакуум-ротационные испарители.

Концентрирование также  можно проводить в токе воздуха  или азота. В практических условиях наиболее приемлемым способом является концентрирование в токе воздуха. Для этого экстракт заливают в фарфоровую выпарительную чашку, ставят ее под шторку вытяжного шкафа и включают тягу. При определении высоколетучих веществ при концентрировании возможны значительные потери яда, поэтому при этой операции необходимо выполнять следующие требования: не концентрировать конечные экстракты при повышенной (выше 40°С) температуре, не упаривать досуха очищенные экстракты.

Индикацию токсических  веществ проводят следующими физико-химическим методами.

Тонкослойную хроматографию наиболее широко применяют в практических лабораториях. Принцип полуколичественного метода состоит в том, что смесь химических веществ, содержащихся в анализируемой пробе, наносят на пластинку и разделяют в тонком слое инертного порошка (селикагель, окись алюминия и др.) с помощью смеси органических растворителей (подвижный растворитель). Пластинку опрыскивают раствором проявляющего реактива, в результате чего на ней появляются в виде окрашенных пятен исследуемые химические соединения. Идентифицируют открытые вещества по величине Rf– частному от деления расстояния, пройденного искомым веществом от точки нанесения (линия старта) до места дислокации, к расстоянию, пройденному подвижным растворителем. Количество открываемого вещества определяют по интенсивности окраски пятна и его размерам.

В практике ветеринарных химико-токсикологических исследований тонкослойная хроматография используется для определения многих пестицидов, алкалоидов, микотоксинов, органических соединений тяжелых металлов. Метод прост по технике использования, не требует сложного оборудования, обладает достаточно высокой специфичностью и чувствительностью (0,05–1,0 мкг в пробе).

Атомно-абсорбционная  спектрометрия основана на поглощении отдельными атомами химических элементов световых лучей в определенной области спектра. Поэтому исследуемые химические вещества вначале минерализуются, а затем в состоянии раствора подвергаются воздействию лучами определенной длины, соответствующей поглощающей способности того или иного элемента. По степени поглощения лучей определяют его количественное содержание. Этот метод находит широкое применение главным образом при определении металлов и металлоидов (ртуть, свинец, кадмий, медь, цинк и др.).

Нейтронно-активационный  анализ основан на облучении пробы нейтронами, в результате чего возникает наведенная радиация, по степени которой и определяют количественный уровень содержания исследуемого элемента. Однако метод требует сложного оборудования, поэтому малоприемлем в практических условиях.

 

Критерии оценки методов определения остатков токсических веществ

 

Методы определения  остатков токсических веществ в  объектах обычно характеризуют по чувствительности, точности и определяемости.

Чувствительность метода–  наименьшее количество химического  вещества, открываемое при заданных условиях метода. Она может быть абсолютной и относительной. Абсолютная чувствительность – наименьшее количество вещества, которое можно определить данным методом или реакцией, лежащей в ее основе. Так, с помощью жидкостной хроматографии можно определить 0,05 нг ТХМ-3. Однако для исследования используют лишь часть аликвоты, предназначенной для анализа, которая соответствует определенной части пробы. Поэтому для полной характеристики метода целесообразно ввести такое понятие, как относительная чувствительность – чувствительность по отношению к одному и тому же объему или массе. Обычно относительную чувствительность принято выражать в мг/кг пробы.

Точность метода. Под  точностью метода, как правило, понимают различие между истинной и экспериментальной величиной. При этом за истинную величину может быть принято количество вещества, вносимого в пробу из стандартного раствора. Поэтому точность метода может быть охарактеризована как разница между количеством вещества, внесенного в пробу и определенного данным методом аналитического исследования. Точность– это величина стандартного относительного отклонения, установленного по результатам воспроизведения методики при внесении данного количества вещества в пробу.

Точность метода соответствует величине стандартного относительного отклонения и вычисляется по формуле


σ(стандартное отклонение)= ∑(X-X)2

N-1

 

где N– число измерений; X– примерная величина; Х– среднее арифметическое; ∑ – знак суммирования.

Сначала рассчитывают среднее  арифметическое, затем абсолютную величину разности между средним арифметическим и значением отдельного измерения; разность возводят в квадрат и эту величину суммируют. Сумму делят на N-1. Квадратный корень из полученного результата представляет собой стандартное отклонение σ.

Однако точность метода может быть вычислена применительно  к определяемости. Поэтому сначала  устанавливают определяемость метода, а затем его точность по показателю относительного стандартного отклонения.

Определяемость метода – средняя величина, показывающая процент открытия вещества в пробе после его внесения из стандартного раствора в количествах, соответствующих пределу определения и максимально возможному уровню содержания. (Жуленко с соавторами, 2002)

 

ГЛАВА 5 ВЫБОР ВИДА ИНДИКАТОРА

 

На современном этапе обращает на себя внимание бурное развитие методов биомониторинга как единственного подхода адекватной оценки состояния биологических и экологических систем (Криволуцкий, 1991; Егорова, Сынзыныс, 1997; Петухова, Доронина, 1999; Евсеева, Гераськин, 2000; Егорова, Белолипецкая, 2000; Колупаев, 2000). В связи с этим разработка, совершенствование и внедрение методов биомониторинга в сеть контроля окружающей среды как отдельных ведомств, так и конкретных АЭС является актуальной задачей (Егорова с соавт., 2002). Методы биотестирования и биоиндикации позволяют диагностировать состояние экосистемы по откликам на стрессовое воздействие извне отдельных 13 компонентов биоты. Экологическая диагностика на уровне биотестирования и биомониторинга дает интегральную адекватную оценку качества среды обитания любой биологической популяции, включая человека. Биотесты могут быть рекомендованы для непрерывного экспресс-контроля состояния окружающей среды промышленных районов и природно-хозяйственных комплексов, контроля залповых вредных выбросов предприятий, для оценки эффективности применяемых методов детоксикации окружающей среды и работы очистных сооружений, а так же экологической паспортизации предприятий и отдельных районов (Richardson, 1996; Rathinam, Mohanan, 1996).

Современный биомониторинг  насчитывает несколько определений  понятию «биотестирование». Биотестирование  представляет собой методический прием, основанный на оценке действия фактора  среды, в том числе токсического, на организм, его отдельную функцию  или систему организмов (Методы биотестирования…, 1989). Согласно Морозовой (2001) биотестирорвание – это метод моделирования последствий воздействия фактора, обладающего общебиологическим действием на живое. Главная задача, решаемая биотестированием − это получение быстрого ответа – есть или отсутствует токсичность (Тарасенко, 1999). Евгеньев (1999) под биотестированием понимает приемы исследования, при котором о качестве среды, факторах, действующих самостоятельно или в сочетании u1089 с другими, судят по выживаемости, состоянию и поведению специально помещенных в эту среду организмов – тест-объектов. Тест-объекты должны отвечать следующим требованиям:

1. Высокая чувствительность  к воздействиям даже малых  доз мутагена.

2. Быстрота и экономичность  методов тестирования.

3. Воспроизводимость  (возможность получения аналогичных  результатов на этой же тест-системе).

4. Чувствительность не  только к мутагенам, но и  к их метаболитам. 14

5. Возможность экстраполировать  данные, полученные при исследованиях  in vitro на условия in vivo (Дмитриева, Парфёнов, 1991).

Биотестирование не отменяет систему аналитических и аппаратурных методов контроля природной среды, а лишь дополняет ее качественно  новыми биологическими показателями, так как с экологической точки  зрения сами по себе результаты определения концентрации токсикантов имеют относительную ценность (Патин, 1981). По мнению Оливернусовой (1991), использование биологических тест-систем позволяет определить изменения в экосистемах на очень ранней стадии, когда они еще не проявляются в виде морфологических и структурных изменений и их нельзя выявить другими методами. Это дает возможность предвидеть нарушения экосистемы и вовремя принять меры. Кроме того, состояние биоиндикаторов можно использовать как дополнительную информацию при оценке здоровья населения. По словам Егоровой (2002) кумулятивный эффект всего многообразия сочетаний различных воздействий возможно оценить лишь с помощью биотестирования. Тарасенко (1999) рассматривает биотестирование как введение в более тщательный и всесторонний анализ химического состава воды. Вопросам биотестирования загрязненности воды поллютантами посвящены многие работы (Илющенко, Щегольков, 1990; Морозова с соавт., 2001; Христова, Безруков, 1994).

Несмотря на некоторые  недостатки биотестирования (трудностью учета адаптационно-приспособительных изменений тест-организмов; фазностью и сезонностью их реагирования, вызванной стимуляцией физиологических функций под воздействием малых концентраций загрязняющих веществ и их угнетением под воздействием больших концентраций; различием метаболизма водных растений и животных и др.) (Бутаев с соавт., 2002). Перспективность контроля антропогенного загрязнения природных вод с помощью биотестов обоснована многочисленными исследованиями, и в Российской Федерации с 1991 г. Оно 15 стало обязательным элементом экологического мониторинга (Правила охраны поверхностных вод…, 1991). Кроме того, методы биотестирования нашли свое отражение в таких нормативных документах, как РД 118-02-90; РД 52.18.344-93; ПНД Ф Т 14.1:2:3:4.4-99; СП 2.1.7.1386-03 и др). В 15 субъектах продолжался эксперимент, направленный на внедрение методов биотестирования в области оценки качества возвратных вод и определения платы за сброс с учетом суммарной токсичности загрязняющих веществ. На основе результатов эксперимента подготовлена "Инструкция по расчету платы за сброс в водные объекты загрязняющих веществ с учетом их суммарной токсичности", которая направлена на рассмотрение в Минфин России и Минэкономики России (Государственный доклад …, 1999)

Биоиндикация – родственный биотестированию прием, использующий для этих же целей организмы, обитающие в исследуемой среде. При выборе таких организмов приходится соблюдать определенные требования, среди которых возможность фиксировать четкий, воспроизводимый и объективный отклик на воздействие внешних факторов, чувствительность этого отклика на малые содержания загрязнителей и др. (Егоров, Егорова, 1999; Волков 2001; Егоров с соавт., 2001; Михайлуц с соавт., 2001; Федорова 2002).

Известен пример биотестирования, основанный на использовании канареек для индикации появления рудничного газа в горных выработках горняками в средние века. Поведение птицы или ее гибель оповещали шахтеров о грозящей им опасности.

Биоиндикацию можно  проводить на уровне молекул, клеток, органов (систем органов), организмов, популяций и даже биоценоза. Повышение уровня организации живой природы может приводить к усложнению, неоднозначности взаимосвязи биологического u1086 отклика антропогенными факторами исследуемой среды, поскольку на них могут накладываться и природные факторы. Поэтому в качестве биотестов выбирают наиболее чувствительные к исследуемым загрязнителям организмы.

Использование биохимических  реакций (молекулярный уровень индикации) связано с тем, что они наиболее чувствительны к воздействию внешних загрязнителей. В присутствии загрязнителей окружающей среды, например, происходит уменьшение содержания хлорофилла в мембранах хлоропластов растений или понижается способность фитопланктона к продуцированию кислорода в процессе фотосинтеза. Это может служить индикаторным признаком воздействия на живую природу газопылевых выбросов предприятий или токсичных компонентов сточных вод (Евгеньев, 1999).

При проведении биологического тестирования на уровне организмов выбор  биологических переменных предполагает, что отклик должен коррелировать с изменениями на экосистемном уровне. Выявить такую зависимость на практике достаточно сложно. Однако такие показатели организмов, как рост особей, их продуктивность, выживаемость, состояние органов дыхания, состава крови и плазмы, удается использовать для биологического тестирования состояния среды (Евгеньев, 1999).

Чувствительность отклика  биотестов на содержание биологически активных веществ в испытуемой среде  можно проиллюстрировать на примерах. Многие организмы способны аккумулировать (накапливать) химические загрязнители выше их естественного содержания в воде и почве без быстро проявляющихся нарушений. Такая способность тест-организмов оказалась полезной в качестве индикаторного признака загрязнения окружающей среды и используется для аккумулятивной биоиндикации. Этот прием биотестирования применяют при исследовании процессов миграции токсичных веществ в окружающей среде. В качестве тест-организмов выбирают те из них, которые имеют высокий коэффициент биологического накопления (КН) токсикантов из окружающей среды. Величина КН зависит от природных факторов. Бензпирен в гидробиоте Берингова моря накапливается с КН, равным 2,9 " 103, а в теплых водах Средиземного моря накопление возрастает в пять раз. Знание КН оказалось удобным для глобального и регионального мониторинга окружающей среды.

Информация о работе Исследование аварийной экотоксикологической ситуации и меры по ее устранению (хром).