Токсикологическая химия

Автор работы: Пользователь скрыл имя, 19 Января 2015 в 21:05, контрольная работа

Описание работы

1 1. Основы токсикологической химии. Организация и основы судебно-медицинской экспертизы в Российской Федерации
45 2. Биохимическая токсикология
55 3. Группа веществ, изолируемых минерализацией ("Металлические яды")
109 4. Группа веществ, изолируемых дистилляцией ("Летучие яды")
156 5. Группа веществ, изолируемых из биологического материала экстракцией и сорбцией (Лекарственные и наркотические вещества)
309 6. Группа веществ, изолируемых экстракцией и сорбцией (Пестициды)
328 7. Химико-токсикологический анализ веществ, изолированием из объекта настаиванием с водой, с последующим диализом, а также требующих или не требующих особых методов изолирования

Файлы: 1 файл

toksikologicheskaya_himiya.doc

— 5.87 Мб (Скачать файл)

 

Оба метода высокочувствительны и специфичны. Предел обнаружения лежит в интервале 10–4 – 10–12 г в зависимости от определяемого элемента и используемой разновидности метода. (Разница в методах определяется способом атомизации и технической конструкцией прибора). Методы могут использоваться как для качественного, так и для количественного анализа. В количественных определениях применяют метод градуировочного графика и метод добавок. Следует отметить, что воспроизводимость результатов в количественных расчётах в методе атомно–абсорбционной спектроскопии выше, чем атомно–эмиссионной.

 

Ещё более чувствительным и универсальным является активационный анализ. В настоящее время известно несколько методов: фотонный активационный анализ, активационный анализ с помощью заряженных частиц и нейтронно–активационный  анализ.

 

Наиболее часто используется  нейтронно–активационный  анализ, который требует для своего проведения сложного оборудования, однако принцип, лежащий в основе этого метода прост. Большинство химических элементов в обычных условиях не являются  радиоактивными, но после облучения становятся радиоактивными. Для облучения используют нейтральные частицы – нейтроны атомного реактора, либо другие радиоактивные нейтронные генераторы или радиобериллиевые излучатели. Два последних источника характеризуются значительно более слабым нейтроннным потоком, чем реакторы.

 

Ядра стабильного элемента, взаимодействуя с нейтронами, превращаются в ядра радиоактивного элемента и испускают излучение с характерной энергией. Регистрируя это излучение, можно установить, какому радиоактивному элементу оно принадлежит. Измеряют, в основном, g–излучение, электромагнитное по своей природе и имеющее аналогию с видимым светом, но отличающимся от него более высокой энергией.

 

В g–спектре легко выделить отдельные пики, различающиеся между собой по энергии излучения; каждый пик может указывать на присутствие определённого элемента. Аналитические определения, как правило, проводят с помощью стандартов, которые облучают вместе с образцом. Измерение интенсивности пиков позволяет получить достоверные сведения о концентрации искомых элементов.

 

 

 

Лишь очень немногие методы анализа допускают возможность исследования пробы без какой–либо предварительной подготовки, в исходном состоянии. Тем более, что это утверждение в большей мере справедливо для ограниченно компонентных и однородных образцов. Такой же сложный объект исследования как биологический материал, содержащий  65 элементов, из которых известна роль только половины, представляет определённые, порой очень большие трудности в анализе данными методами и нуждается в тщательной предварительной подготовке проб.

 

Однако, если технические затруднения в конечном итоге преодолимы, то экономическая проблема, связанная с дороговизной и рентабельностью оборудования, используемого в методах, делает оснащение этими приборами большинства химико–токсикологическихи криминалистических лабораторий невозможным.

 

В связи с этим, некоторый интерес представляют электрохимические методы анализа, стоимость оборудования в которых значительно ниже. Так например, вольтамперометрия (полярография) пригодна для определения почти всех неорганических катионов, а её разновидность – инверсионная вольтамперометрия (инверсионная полярография) к тому же очень чувствительна (10–9 – 10–10 моль/л). В основе этого метода лежит концентрирование определяемого вещества на поверхности или в массе электрода с последующей регистрацией анодной вольтамперной кривой. Таким образом, весь процесс состоит из двух стадий:

 

1) накопление определяемого элемента  на электроде (электролиз);

 

2) получение вольтамперограммы (развёртка потенциала).

 

Для проведения электролиза широко применяют различные типы рабочих электродов: ртутноплёночные различной формы, так как для повышения чувствительности метода необходимо уменьшить объём ртути; платиновые; золотые; стеклоуглеродные; стеклографитовые и другие.

 

Ртутно–плёночный электрод на серебряной подложке представляет собой тонкую плёнку ртути (20 – 100 мкм), нанесённую на отшлифованную серебряную проволоку или путём погружения её в чистую ртуть, или путём электролиза. Серебряная подложка крепится в инертном материале – стекле, фторопласте или полиэтилене. Поверхностная плёнка ртути тщательно растирается (калькой, фильтром) по серебру для предотвращения контакта серебра с рабочим раствором. Стеклоуглеродный, стеклографитовый, золотой и другие электроды представляют собой стеклянные полые стержни, в которые запакованы под вакуумом медная проволока с прикреплённым серебряным стержнем, выполняющим функции проводника и служащим для закрепления электрода в приборе, а также соответствующей рабочей поверхностью, которая помещается в рабочий раствор.

 

Электродом сравнения служит хлорсеребряный. Хлорсеребряный  электрод изготавливают путём нанесения хлористого серебра разными способами на серебряную поволоку. При электрохимическом способе очищенную серебряную спираль погружают в 0,01-0,1 моль/л раствор кислоты хлороводородной и присоединяют её к положительному полюсу сухой батареи на 1,5 В. К отрицательному полюсу через реостат и миллиамперметр присоединяют погружённую в кислоту платиновую проволочку. С помощью реостата регулируют силу тока (1 - 10) мА и пропускают ток в течение нескольких минут, чтобы на поверхности серебряного анода образовался тонкий слой серебра хлорида. После электролиза электрод помещают во фторопластовую трубочку с раствором  калия хлорида соответствующей концентрации и отделяют от анализируемого раствора пористой пробкой (из стекла, керамики и т.д.).

 

На рабочий электрод подают потенциал на несколько десятых долей вольта отрицательнее полуволны определяемого иона (см. полярографию)  и катионы металла начинают восстанавливаться на поверхности электрода до свободного металла. Обычно в процессе концентрирования выделяется только часть определяемого вещества, поэтому для получения количественных результатов необходимо не только контролировать потенциал, приложенный к рабочему электроду, но и тщательно воспроизводить размер электрода, продолжительность электролиза и скорость перемешивания как анализируемого, так и стандартного раствора, применяемого для калибровки.

 

В конечном итоге, чувствительность вольтамперометрического метода, используемого на завершающей стадии анализа, определяется продолжительностью стадии электролиза. По окончании электролиза перемешивание прекращают и дают раствору успокоиться в течение примерно 30 секунд. Затем потенциал, приложенный к рабочему электроду, линейно с заданной скоростью изменяют (разворачивают) в анодном (положительном)  направлении и наблюдаемое изменение тока, проходящего через электролитическую ячейку, регистрируют как функцию наложенного потенциала. Ток пика вещества (или высота пика)  после поправки на остаточный ток прямо пропорционален его концентрации. Концентрацию вещества находят по калибровочному графику, построенному по стандартным растворам или методом внутреннего стандарта.

 

Следует отметить перспективность использования таких методов как хроматография (тонкослойная, бумажная), электрофорез, принципы которых должны быть вам хорошо знакомы. Основное назначение этих методов – разделение веществ. Чувствительность качественного анализа электрофорезом и хроматографией определяется чувствительностью химических реакций обнаружения, которые используются для проявления электрофореграмм и хроматограмм. С целью повышения чувствительности анализа указанными методами рекомендуется проявлять металлы люминесцентными реакциями, основанными на способности многих катионов изменять характер люминесценции различных органических реагентов. Кроме того, меняя рН среды с помощью буферных растворов, можно одним и тем же реактивом провести обнаружение катионов и анионов в смеси. Например, 8–оксихиноляты металлов флюоресцируют при различных значениях рН.

 


 

 

 

      1. ГРУППА ВЕЩЕСТВ, ИЗОЛИРУЕМЫХ ДИСТИЛЛЯЦИЕЙ («ЛЕТУЧИЕ ЯДЫ»)

 

 

 

В данной главе дана общая характеристика группы «летучих ядов»; основы перегонки с водяным паром (для простых и азеотропных смесей). Определены объекты судебно-химического исследования; основы пробоподготовки; необходимая аппаратура и техника перегонки для проведения анализа на группу «летучих ядов». Рассмотрены современные методы изолирования, их характеристика, дана сравнительная оценка методам (рассмотрена дистилляция с водяным паром, микроперегонка и микродиффузия).

 

Определено токсикологическое значение некоторых летучих ядов. Показано использование химических реакций при обнаружении «летучих ядов».

 

Отдельно рассмотрено обнаружение цианидов методом микродиффузии. Показано количественное определение цианидов. Рассмотрено обнаружение алкилгалогенидов, альдегидов и кетонов, фенола, уксусной кислоты.

 

Отдельно рассмотрены спирты, токсикокинетика спиртов, распределение в организме, биотрансформация, экскреция. Определены объекты исследования при проведении анализа на спирты. Рассмотрены правила отбора проб у живых лиц, трупного материала. Показаны химические свойства спиртов, химические реакции для обнаружения спиртов в дистилляте (метанола, этанола, изоамилового спирта, пропилового, бутилового спиртов и этиленгликоля).

 

Особое внимание уделяется этиловому спирту. Показаны свойства, механизм действия на организм человека; его токсичность. Определены проблемы и распространенность алкоголизма, экспертиза алкогольного опьянения, клиника отравлений этиловым спиртом. Выделены методы анализа, применяемые в определении наркотического опьянения (качественно-количественные). Показаны предварительные качественные пробы на этиловый алкоголь при исследовании выдыхаемого воздуха и биологических жидкостей (проба Рапопорта А.М., индикаторные трубки Мохова – Шинкаренко).

 

Показана необходимость количественного определения спиртов (химические и современные биохимические методы исследования; газохроматографический метод исследования этилового спирта).

 

4.1. ОБЩАЯ ХАРАКТЕРИСТИКА ГРУППЫ

В химико-токсикологическом анализе деление токсикологически важных веществ на группы основано на способах их изолирования из исследуемого объекта. Таких групп насчитывается шесть, причем три из них подлежат обязательному судебно-химическому исследованию при проведении полного (общего) судебно-химического анализа.

 

Одной из групп токсикологически важных веществ, подлежащих обязательному исследованию, являются «летучие яды», или вещества, изолируемые дистилляцией. Все они изолируются из биологического объекта одним из наиболее старых и широко используемых методов дистилляцией - перегонкой с водяным паром.

 

В группу «летучих ядов» входят вещества, различные по своей химической природе:

 

1. Синильная кислота HCN имеет собственную  низкую температуру кипения + 26,5°С  и занимает первое место по  своей летучести с водяным  паром.

 

2. Алкилгалогениды:

СНС13 

(хлороформ)

 

Cl3C-CH(OH)2 

(хлоралгидрат)

 

ССl4 

(четыреххлористый углерод)

 

C2H4CI2 

(дихлорэтан)

 

C2Cl6 

(гексахлорэтан)

 

 

  1. Альдегиды и кетоны алифатического ряда:

СН2О  (формальдегид)

 

СНз-СО-СНз (ацетон)

 

4. Алканолы (спирты):

 

СНзОН (метанол)

 

С2Н5ОН (этанол)

 

С3Н7ОН (пропанол)

 

С4Н9ОН (бутанол)

 

С5Н 11ОН (пентанол)

 

диолы       СН2 ОН -СН2 ОН   (этиленгликоль)

 

5. Сложные эфиры алифатического  ряда:

 

CH3COOC2H5 (амилацетат)

 

6. Карбоновые кислоты  алифатического ряда:

 

CH3COOH (кислота уксусная)

 

CH3-СНOH-СООН (кислота молочная  или альфа-оксипропионовая)

 

7. Сероуглерод CS2

 

8. Элементоopгaнические  соединения жирного ряда:

 

(C2H5)4Pb (тетраэтилсвинец)

 

9. Ароматические углеводороды:

 

С6Н6 (бензол)

 

CH3-С6Н5 (толуол)

 

ксилолы (содержат два радикала -СНз в бензольном кольце в различных положениях)

 

10. Нитро- и аминопроизводные  ароматического ряда:

 

С6Н5NО2 (нитробензол)

 

С6Н5NH2 (анилин)

 

11. Оксипроизводные ароматического ряда:

 

С6Н5ОН (фенол)

 

крезолы

 

кислота салициловая (о-оксибензойная)

 

12. Фосфор и первые  продукты его окисления и восстановления 

 

Н3РО2 (кислота фосфорноватистая)

 

Н3РО3 (кислота фосфористая)

 

PH3 (фосфин)

 

ФОСы (эфиры фосфорных кислот)

 

13. Жидкие алкалоиды:

 

кониин

 

никотин

 

анабазин

 

Из перечисленных соединений согласно действующего до настоящего времени приказа Минздрава СССР №1021 от 25.12.73 г., в обязательный круг химико - токсикологического исследования при проведении общего анализа включены:

 

1. Кислота синильная.

 

2. Алкилгалогениды: хлороформ, дихлорэтан.

 

3. Альдегиды: формальдегид.

 

4. Алканолы: метанол, этанол, пропанол, бутанол, пентанол, изоамиловый  спирт.

Информация о работе Токсикологическая химия