Автор работы: Пользователь скрыл имя, 19 Января 2015 в 21:05, контрольная работа
1 1. Основы токсикологической химии. Организация и основы судебно-медицинской экспертизы в Российской Федерации
45 2. Биохимическая токсикология
55 3. Группа веществ, изолируемых минерализацией ("Металлические яды")
109 4. Группа веществ, изолируемых дистилляцией ("Летучие яды")
156 5. Группа веществ, изолируемых из биологического материала экстракцией и сорбцией (Лекарственные и наркотические вещества)
309 6. Группа веществ, изолируемых экстракцией и сорбцией (Пестициды)
328 7. Химико-токсикологический анализ веществ, изолированием из объекта настаиванием с водой, с последующим диализом, а также требующих или не требующих особых методов изолирования
O = C (NH2)2 + 2 HNO3 ® N2 + 2 NO + CO2 + 3 H2O
O = C (NH2)2 + 2 HNO2 ® 2 N2 + CO2 + 3 H2O
Фильтр и остатки жира промывают 1 – 2 раза горячей водой. Промывные воды объединяют с деструктатом. После охлаждения жидкость разбавляют водой в мерной колбе на 200 мл и определяют ртуть.
Для обнаружения ртути в деструктате применяют реакции с дитизоном и с взвесью меди (I) йодида. Реакцию с дитизоном также применяют для фотоколориметрического определения ртути, а реакцию со взвесью меди (I) йодида используют и для визуального нефелометрического определения ртути в деструктате.
1.Реакция с дитизоном
Фотоэлектроколориметрическое определение ртути ( = 485 нм) по одноцветной окраске дитизоната ртути проводится после непосредственной экстракции его из деструктата четыреххлористым углеродом
в CCl4_ зеленый цвет
2. Реакция с меди (I) йодидом
Выделение ртути из деструктата проводится с использованием йодида меди (I):
Hg2+ + 4 CuI ® Cu2[HgI4] ¯ + 2 Cu+
Для полного осаждения ртути вводят избыток CuI. Колориметрическое определение проводят после проведения ртути из осадка Cu2[HgI4] в растворимый комплекс К2[HgI4]
Cu2[HgI4] + 2КI/I2 К2[HgI4] + 2 CuI
В присутствии ионов ртути взвесь окрасится в розовый или красный цвет.
Токсикологическое значение В промышленности различные препараты сурьмы Sb2О5; Sb2S5 - применяются при изготовлении эмалированной по гончарных изделий, стекла, текстильных и резиновых предметов огнеупорных тканей, брезента и в других отраслях. Ряд препаратов сурьмы, как, например, пятнистая сурьма, сурьмин, стибенил, неостибозан, солюсурьмин и др., используются в медицине.
Описаны случайные медицинские, пищевые, производственные и даже умышленные отравления препаратами сурьмы.
Клиническая картина отравления сурьмой сходна с клиникой отравления соединениями мышьяка. Смертельная доза тартрата антимонилкалия для человека при введении через рот составляет ~ 150 мг.
При патологоанатомическом исследовании трупа отмечаются гиперемия легких, расстройство кровообращения, кровоизлияния в легких и органах желудочно-кишечного тракта.
Опытами на животных установлено, что сурьма может накапливаться в почках и главным образом в печени. По дани А. О. Войнара, в органах человека и млекопитающих сурьма естественно содержащийся элемент не обнаружена.
Обнаружение сурьмы
1. Реакция с малахитовым зеленым (основная реакция)
Эта реакция основана на том, что малахитовый зелёный (равно как и бриллиантовый зелёный), являющийся основным красителем, образует с ацидокомплексом сурьмы ионный ассоциат, который экстрагируется толуолом, окрашивая его в синий или голубой цвет.
Сурьма, находящаяся в минерализате в степени окисления 3+, окисляется натрия нитритом до степени окисления 5+ и с кислотой хлороводородной даёт ацидокомплекс, который и вступает в реакцию.
HSbO2 + NaNO2 + HCl ® HSbO3 + NO + NaCl + H2O
HSbO3 + 6 HCl ® HSbCl6 + 3 H2O
В присутствии сурьмы слой толуола окрашивается в сине–голубой цвет, а водный слой – в оранжевый. Толуольное извлечение отделяют, встряхивают его в течение 5 сек с 3 мл 25 % раствора кислоты серной. Голубая окраска толуольного слоя должна сохраниться.
В качестве подтверждающей реакции рекомендуется реакция образования сурьмы сульфида.
2. Реакция образования сурьмы сульфида
Sb2(SO4)3 + 3 Na2S ® Sb2S3 ¯ + 3 Na2SO4
В присутствии сурьмы появляется оранжевый осадок.
Токсикологическое значение
Соединения мышьяка на протяжении веков привлекали, да и сейчас продолжают привлекать внимание фармацевтов, токсикологов и экспертов-химиков. Проф. А. В. Степанов, характеризуя мышьяк как яд, отмечал, что судебная химия делала на нем свои первые шаги.
В руководствах по судебной (токсикологической) химии мышьяку всегда уделялось большое внимание. При разработке методов минерализации критерием для их оценки всегда являлось наиболее полное обнаружение и определение мышьяка (и ртути). В настоящее время, несмотря на появление большого количества веществ, представляющих токсикологический интерес, мышьяк и его соединения не утратили своего значения. Причиной этого является широкое применение различных препаратов мышьяка в народном хозяйстве и медицине и их токсичность.
Особенно велико в настоящее время значение следующих препаратов мышьяка: мышьяковистого ангидрида (AS2O3), применяемого в качестве инсектицида и консерванта в сельском хозяйстве, в стекловарении для обесцвечивания стекла, в кожевенной промышленности, медицине и т. д., а смесь натриевых солей орто - и метамышьяковистых кислот (Na3AsО3 и NaAsО2), применяемых в сельском хозяйстве в качестве инсектицидов.
Изумрудно-зеленая окраска содержимого желудков трупов животных, пищевых продуктов и других объектов исследования неоднократно являлась наводящим указанием для исследования их на наличие мышьяка и меди. Имеют токсикологическое значение и медицинские препараты мышьяка: Фаулеров раствор, натрия арсенат, миарсенол, новарсенол, осарсол и др.
Представляет токсикологический интерес и газообразный мышьяковистый водород, который может быть причиной как производственных, так и бытовых отравлений.
Соединения мышьяка издавна являлись орудиями преступления, что было связано с их повсеместной известностью, доступностью для широких слоев населения, отсутствием запаха, сладковатым вкусом таких препаратов, как, например, мышьяковистый ангидрид. Сходство картины отравления мышьяком с течением некоторых тяжелых хронических заболеваний, особенно когда небольшие дозы яда давались в течение длительного времени, приводило к тому, что отдельные преступления оставались нераскрытыми.
Причинами отравлений соединениями мышьяка в настоящее время могут быть неосторожное, небрежное или халатное отношение к хранению и применению препаратов мышьяка в народном хозяйстве, недостаточно четко поставленная техника безопасности и другие упущения. Не исключена возможность и медицинских отравлений.
Соединения мышьяка обладают как местным, так и общим действием на организм. Введенный внутрь мышьяк связывается с SH-группами ферментов и нарушает процессы окислительного фосфорилирования. Местно действует прижигающе, вызывая воспаление и омертвение тканей. На некротизирующем действии мышьяка основано применение мышьяковистого ангидрида в зубоврачебной практике.
При введении токсических доз препаратов мышьяка внутрь наступает отравление. Различают две основные формы отравления: желудочно-кишечную и нервную. Чаще наблюдается смешанная форма. При первой форме отравления появляются металлический привкус во рту, жжение в зеве, жажда, сильные боли в животе, неукротимая рвота, тяжелый понос.
При нервной форме в период от нескольких дней до нескольких недель развивается типичный мышьяковый неврит с парестезией конечностей и языка, иногда довольно стойкими параличами.
Мышьяк выделяется с мочой и калом, слюной, желчью, молоком. Процесс ускоряется под влиянием димеркаптола. Через неповрежденную кожу мышьяк и его соли не всасываются.
Смертельная доза для неорганических препаратов мышьяка составляет 0,05-0,1 г. Однако иногда и большие дозы могут не привести к смерти. Отмечают как повышенную чувствительность к мышьяку, так и привыкание к нему. Мышьяк обладает способностью кумулироваться.
Если при остром отравлении он концентрируется в основном в желудочно-кишечном тракте и паренхиматозных органах, то при хроническом отравлении накапливается преимущественно в костях и ороговевших тканях (волосы, ногти, кожа).
Патологоанатомическая картина при быстро протекающих отравлениях нехарактерна. При медленно текущих отравлениях отмечают жировое перерождение печени, почек, сердечной мышцы, местами кровоизлияния в серозных оболочках, жидкое (в виде рисового отвара) содержимое кишечника.
Мышьяк хорошо сохраняется в биологическом материале и может быть обнаружен в ней: через несколько лет после смерти.
Большое значение придают количественному определению» мышьяка в органах, так как он относится к числу чрезвычайно распространенных в природе элементов, содержится в почве, воде и т. п. При судебно-химических исследованиях эксгумированных трупов в лабораторию вместе с органами должны быть доставлены образцы земли, изъятой из шести участков с места захоронения (над гробом, под гробом, у боковых поверхностей и концов гроба), а также части одежды, украшения и доски гроба.
Содержание мышьяка в серной кислоте может привести к попаданию его в патоку и другие пищевые продукты. В животных и растительных продуктах, например в сырых плодах и овощах, мышьяк может содержаться в значительных количествах. Количество мышьяка, принимаемое человеком с пищей, в зависимости от состава ее колеблется и может достигать 1 мг в сутки. По данным Войнара, содержание мышьяка в органах человека колеблется в пределах 0,008—0,2 мг в 100 г сырого органа, а содержание мышьяка в коже и волосах может достигать 600 мг в 100 г.
В большинстве случаев результаты химико-токсикологического исследования помогают решить вопрос, в какой форме или каким путем попал мышьяк в объект исследования. Примерами этому может служить следующее:
а) совместное обнаружение в объекте исследования мышьяка и меди при отравлениях швейнфуртской зеленью;
б) одновременное нахождение мышьяка в органах эксгумированного трупа и в земле кладбища или нахождение мышьяка в органах трупа и ненахождение его в земле кладбища.
Для исследования на растворимые и, следовательно, способные проникнуть в труп соединения мышьяка из земли, находящейся вокруг гроба, 200-500 г земли последовательно извлекают водой, водным раствором аммиака и кислотой соляной. Вытяжки подвергают минерализации и исследуют на мышьяк.
в) Одновременное обнаружение мышьяка после минерализации, например, мочи, и получение азокрасителя при наличии в ней органических препаратов мышьяка. Для второй реакции 10 мл мочи подкисляют соляной кислотой, охлаждают до 0°, добавляют осторожно 4-5 капель 0,5 % раствора натрия нитрита и наслаивают 5 мл 1% раствора резорцина - красное кольцо на границе слоев указывает на наличие в исследуемом материале аминогруппы.
г) Обнаружение в объекте исследования крупинок мышьяковистого ангидрида. Крупинки мышьяковистого ангидрида трудно растворимы в воде, возгоняются, давая кристаллические возгоны (тетраэдры и октаэдры), а при нагревании с углем восстанавливают до металлического мышьяка. Растворы кислоты соляной дают и другие качественные реакции на ион мышьяка.
Обнаружение мышьяка
Применяемые в химико – токсикологическом анализе методы обнаружения мышьяка основаны на переведении его в гидрид мышьяка и на последующем определении гидрида мышьяка при помощи реакций Зангер – Блека и реакции Марша. При этих реакциях из соединений мышьяка выделяется гидрид мышьяка, который летуч и ядовит. Поэтому при выполнении данных реакций требуется особая осторожность.
Классическими методами обнаружения мышьяка при химико- токсикологическом анализе является: метод Марша, предложенный английским химиком Джеймсом Маршем 1836 г.
Достоинствами способа являются:
1) возможность многократной проверки наличия или отсутствия мышьяка в исследуемой пробе;
2) наглядность, доказательность, специфичность.
В то же время обнаружение мышьяка по методу Марша требует затраты значительного количества времени эксперта–химика – более 3-х часов.
Поэтому в качестве ориентирующей реакции, имеющей только отрицательное значение, в дробном обнаружении мышьяка введена реакция Зангер – Блека, проведение которой осуществляется в течение 60 мин.
Реакция Зангер – Блека неспецифична для мышьяка, что ограничивает значение её в токсикологической химии, но высокочувствительна. Чувствительность реакции достигает 0,1 мкг мышьяка в исследуемом объёме. При отрицательном результате этой чувствительной реакции отпадает необходимость в проведении реакции Марша. При положительном результате, подтверждение обнаружения мышьяка реакцией Марша является обязательным.