Структурные особенности и оптические свойства тонких слоев аморфного гидрогенизированного углерода

Автор работы: Пользователь скрыл имя, 16 Января 2013 в 14:42, автореферат

Описание работы

Актуальность диссертационной работы обусловлена необходимостью создания новых оптических материалов для решения практических задач, возникающих при разработке компонентной базы квантовой электроники и оптоэлектронных устройств, а также развития оптических телекоммуникационных систем. К таким материалам относятся аморфные углеродные пленки с показателем преломления близким алмазу, сочетающие в себе прозрачность в ИК области спектра с механической прочностью и химической стойкостью. Уникальное сочетание свойств открывает большие возможности для применения алмазоподобных углеродных пленок в оптических элементах лазеров, инфракрасной технике и других оптических устройствах, например, в качестве защитных и просветляющих покрытий оптических элементов.

Файлы: 1 файл

KonshinaEA.doc

— 470.50 Кб (Скачать файл)

Публикации. По теме диссертации опубликовано 56 работ из них 35 работ в ведущих рецензируемых научных журналах и изданиях, включенных в перечень ВАК, таких как Оптический журнал, Оптика и спектроскопия, ЖТФ и Письма в ЖТФ, ФТТ, ФТП, Кристаллография, и др., а также публикации в зарубежных изданиях, включенных в систему цитирования Web of Science: Diamond&Related materials, J. Phys. D. Appl. Phys., Mol. Cryst.&Liq. Cryst., Ferroelectrics и др., 8 из этих работ подготовлены лично автором. Получено одно авторское свидетельство и 5 патентов, в том числе 4 международных.

Личный вклад автора. Все изложенные в диссертации результаты получены автором лично или при его непосредственном участии. Автор осуществлял выбор направлений и постановку задач исследований, а также проведение экспериментов по получению экспериментальных образцов и анализ полученных результатов исследований.

Структура и объем  диссертации. Диссертация состоит из введения, восьми глав, заключения и списка цитируемой литературы, включающего 231 ссылку, из них 57 ссылок на работы автора. Работа изложена на 250 страницах, содержит 81 рисунок и 25 таблиц

СОДЕРЖАНИЕ ДИССЕРТАЦИИ

Во введении обсуждается объект исследования и актуальность работы, развитие представлений о структуре пленок, сформулированы цели, задачи, научная новизна полученных результатов и защищаемые положения, а также дана краткая аннотация содержания отдельных глав.

Первая глава диссертации посвящена исследованию кинетики CVD-процесса осаждения пленок аморфного гидрогенизированного углерода в плазме тлеющего разряда на постоянном токе. В этой главе дается описание конструкции и работы многоэлектродного устройства, используемого для осаждения исследуемых пленок, особенностью которого является одновременное существование наряду с плазмой тлеющего разряда на постоянном токе, магнетронной плазмы, локализованной вблизи анода. При подаче напряжения на анод, расположенный в области скрещенных магнитного и электрического полей, возникает плотная плазма тороидальной формы в результате эффективного захвата электронов магнитным полем, что способствует ионизации газа в разрядном промежутке при давлениях на порядок ниже, чем в известных диодных системах [1,2]. Рис. 1 иллюстрирует зависимость ионного тока I на электроде-держателе подложек от давления P ацетилена в вакуумной камере. В отсутствие магнитного поля тлеющий разряд возникает в устройстве при более высоком давлении P = 0,06 Па (рис. 1, кривая c) и напряжении U = 1200 В, а ионный ток зависит от давления. Использование магнетронной плазмы уменьшает влияние давления в вакуумной камере на ионный ток (рис. 1, кривые а и б), а повышение напряжения от 600 до 800 В вызывает увеличение тока в два раза.

Рис. 1. Зависимости ионного тока на электроде-держателе подложек от давления ацетилена в вакуумной камере при поддержке тлеющего разряда тороидальной плазмой, локализованной вблизи анода, при U = 600 В (a) и 800 В (b) и без нее при U = 1200 В (c).


Исследование вольтамперных характеристик  устройства показало, что наиболее эффективная ионизация газа наблюдается при давлении 0,03 Па. Ионный ток на подложку можно изменять от 2 до 40 мА в интервале межэлектродных напряжений 600-1200 В и давлений в вакуумной камере от 0,004 до 0,1 Па. Мощность разряда W, рассеиваемая положительными ионами на электроде-держателе подложек, при этом увеличивается от 1,2 до 44 Вт [3]. Анализ характеристик разработанного устройства показал, что его использование расширяет возможности получения тонких пленок a-C:H с помощью CVD-процесса в плазме тлеющего разряда, благодаря снижению рабочего давления по сравнению с обычными диодными системами.

Согласно модели адсорбированного слоя [Jacob W. Surface reactions during growth and erosion of hydrocarbon films. // Thin Solid Films. 1998. V. 326. P. 1-42] углеводородные радикалы, образующиеся в плазме, конденсируются на поверхности в результате физической адсорбции. Затем под действием энергичных частиц происходит индуцированная ионами сшивка структуры и переход углеводородных радикалов в хемосорбированное состояние. Поверхность пленки при этом подвергается непрерывной бомбардировке положительными ионами, которые в зависимости от передаваемой ими энергии могут способствовать как уплотнению конденсата за счет образования сшивок, так и деструкции слабосвязанных частиц и их диффузии по поверхности с последующей десорбцией. Баланс процессов, способствующих росту и травлению пленки, определяет скорость конденсации.

Уменьшению скорости осаждения  пленок способствует разбавление паров  углеводородов инертным газом, что  вызвано усилением процесса десорбции  слабосвязанных частиц конденсата. Так, например, скорость осаждения r пленки a-C:H на медные подложки можно снизить от 4 до 0,5 Å/с, уменьшая объемную концентрацию ацетилена в смеси с криптоном до 20 % (рис. 2).

Рис. 2. Изменение скорости осаждения пленок a-C:H на поверхность медных подложек при увеличении объемного содержания ацетилена в смеси с криптоном и постоянной мощности разряда, равной 1,8 Вт при давлении 0,05 Па.

Рис. 3. Скорости осаждения пленок a-C:H на поверхность прозрачного проводящего электрода In2SnO3 (■) и полупроводникового слоя a-Si:C:H (□) при давлении ацетилена P ~ 0,05 Па в зависимости от мощности разряда.


На скорость осаждения пленок влияет образование поверхностного заряда. Стекание заряда в процессе конденсации  зависит как от проводимости подложки, так и от толщины и удельного сопротивления растущей пленки [Ludwig M. Thickness limits for coatings deposited by direct current cracking of vapors. // Appl. Opt. 1986. V. 25. No 22. P. 3977-3979]. Было показано, что при одинаковой мощности разряда скорость осаждения пленок на поверхность прозрачного проводящего электрода на основе окислов индия и олова (In2SnO3) на порядок величины выше (рис. 3), чем в случае осаждения на поверхность полупроводникового слоя a-Si:C:H с удельным сопротивлением около 1012 Ом см.

Оптические постоянные пленок a-C:H были исследованы с помощью метода многоугловой эллипсометрии на длине волны 632,8 нм. Одновременное определение трех параметров показателей преломления n и поглощения k, а также толщины пленки дало возможность установить зависимость оптических постоянных от скорости осаждения в CVD-процессе. Было установлено, что с увеличением скорости осаждения пленок из паров ацетилена и толуола на кварцевые подложки при температуре окружающей среды показатели преломления и поглощения пленок монотонно убывают [4]. В интервале r = 0,4¸2,5 Å/с оптические постоянные были равны n = 2,4-2,0 и k = 0,3-0,1 для пленок, полученных из ацетилена, и n = 1,8-1,6 и k = 0,1-0,01 для пленок, полученных из толуола. Самый низкие значения показателя преломления в интервале n = 1,55-1,6 наблюдались у пленок, полученных из октана в том же интервале скоростей, при этом величина k была меньше 0,01 и не зависела от скорости осаждения. Наблюдаемые различия оптических постоянных пленок a-C:H, полученных при одинаковой скорости, объясняется неодинаковой способностью исходных молекул углеводородов к ионизации. Вариация n в интервале от 2,4 до 1,55 сопровождается увеличением прозрачности пленок в видимой области спектра [4,5].

Вторая глава посвящена исследованию особенностей структуры тонких пленок на основе a-C:H с помощью адсорбционной спектроскопии в ИК и видимой областях спектра и резонансной КР спектроскопии, а также метода декорирования поверхности островковыми пленками Ag.

Рентгеноструктурный анализ пленок a-C:H с n = 2,4, осажденных на медные подложки из ацетиленовой плазмы тлеющего разряда, показал, что наблюдаемые рефлексы не соответствуют известным кристаллическим формам углерода, а структура пленок является аморфной. Результаты исследования полосы поглощения 3100-2700 см-1 в ИК спектрах, соответствующей валентным колебаниям CH-групп, свидетельствуют о присутствии в структуре атомов углерода в sp3, sp2, и sp валентных состояниях, содержание которых зависит от условий осаждения и толщины пленки [6]. Особенности спектров пленок а-С:Н, наблюдаемые в полосе поглощения СН-групп, связаны с многообразием процессов разложения, присоединения и сшивания фрагментов структуры, а также адсорбции и десорбции продуктов газофазной реакции в зависимости от условий конденсации в плазме [7].

Содержание в  пленках связанного водорода, может быть рассчитано по интегральной интенсивности полос поглощения в ИК спектрах [Watanabe I., Hasegawa S., Kurata Y. Photoluminiscense of hydrogenated amorphous carbon films. // Jap. J. Appl. Phys. 1982. V. 21. No 6. P. 856-859]. Расчет показал, что у исследуемых пленок содержание водорода в пленках не превышало 20% [6]. Однако результаты химического полумикроанализа путем окисления навески порошкообразной пленки в струе кислорода при температуре 1000оС в присутствии катализатора показали, что содержание водорода составляет 31-35 ат.%, что в полтора раза больше. Расхождение результатов расчета и экспериментальных данных свидетельствуют о присутствии в структуре а-С:Н полимерной составляющей, типа полиеновых цепей (HC=CH)n, колебания CH-групп в которых неактивны в ИК спектрах. В то время как ассиметричные колебания CH-групп в sp3 валентном состоянии активны благодаря их случайному расположению в структуре, что приводит к увеличению дипольного момента. По оценкам среднее координационное число для исследуемых пленок а-С:Н с n = 2,0-2,4 соответствует 2,6.

Спектры ЭПР исследуемых пленок а-С:Н были подобны спектрам различных углей, продуктов карбонизации органических соединений, ароматических и свободных радикалов в твердой фазе. Интенсивность одиночной симметричной линии с g-фактором свободного электрона, наблюдаемой в спектрах ЭПР, коррелировала с изменением интенсивности полосы поглощения валентных колебаний СН-групп в ИК спектрах. Спиновая плотность

а-С:Н пленок, характеризующая концентрацию неспаренных электронов, составила 1021-1022 спин/Кг, что указывает на существование в структуре свободных радикалов, образующихся в результате обрыва цепи, отщепления водорода и разрыва кратных связей [6].

Спектры КР пленок а-С:Н, полученные при возбуждении на длине волны lв = 441,6 нм, представляли собой широкую полосу, которую условно можно разложить на две полосы гауссова типа с максимумами в области 1565 cм-1 (полоса А) и 1372 cм-1 (полоса Б). В результате отжига пленок в вакууме при температуре 420°С в течение часа максимумы полос смещались в область более высоких частот к 1600 cм-1 и 1405 cм-1, соответственно. При этом в слабой полосе вблизи 3000 см-1 появлялась структура, положение максимумов в которой соответствовало положению обертонов и составного тона полос А и Б, что позволяет интерпретировать ее, как спектр второго порядка. При вариации lв в интервале от 441,6 до 632,8 нм (2,81-1,96 эВ) было обнаружено изменение параметров спектров КР пленок а-С:Н: положения максимумов полос А и Б, их полуширины, а также относительных интегральных интенсивностей JБ/JА, что указывает на резонансную природу спектров [8]. Особенности, наблюдаемые в спектрах КР пленок а-С:Н, не характерны для спектров мелкодисперсных графитов [Баранов А.В., Бехтерев А.Н., Бобович Я.С., Петров В.И. Интерпретация некоторых особенностей в спектрах комбинационного рассеяния графита и стеклоуглерода. // Oпт. и спектр. 1987. Т. 62. в. 5. С. 1036-1042].

Полученные результаты свидетельствуют  о том, что несмотря на внешнее сходство спектров КР а-С:Н и неупорядоченных графитов, в структуре как исходных, так и отожженных пленок отсутствуют микрокристаллы графита, как материала с определенными электронными и фононными свойствами. Сдвиг полос в спектрах а-С:Н при вариации длины волны возбуждения связан с присутствием в структуре рассеивающих центров, которым соответствуют разные полосы поглощения в электронных спектрах и колебательные частоты. Широкий разброс электронных и колебательных параметров этих полос обусловлен разными размерами элементов структуры, а резонансные условия возбуждения спектров КР приводят к избирательному усилению рассеяния.

Характер зависимости относительной интенсивности JБ/JА основных полос, условно выделенных в спектрах КР, от lв, а также изменение ее вида при переходе от спектра исходной пленки к спектру отожженной пленки, свидетельствует о том, что эти полосы относятся к разным типам элементов структуры. В соответствии с положением максимумов полоса А связана с рассеянием на полиеновых цепях различной длины [Kezmahy H. Resonance Raman Scattering from Neutral and Doped Polyacetylene. // Phys. Stat. Sol. B. 1980. V. 97. P. 521-531], а полоса Б – c рассеянием на полициклических ароматических группах с разным числом колец, для которых характерны интенсивные линии вблизи соответствующих колебательных частот. Правильность интерпретации полос, наблюдаемых в спектрах КР пленок а-С:Н, подтвердили теоретические расчеты КР спектров аморфного углерода [Satoshi Matsunuma. Theoretical simulation of resonance Raman bands of amorphous carbon. // Thin Solid Films. 1997. V. 306. P. 17-22]. Наличие составного тона в спектре КР второго порядка дает основание утверждать, что структура пленок а-С:Н не является гетерофазной, а ее отдельные элементы имеют общую систему сопряжения кратных связей и представляют собой углеводородные p-связанные кластеры.

Структуру пленок а-С:Н можно представить  как набор беспорядочно ориентированных p-связанных углеводородных кластеров, состоящих из полициклических ароматических колец различных размеров и разветвленных полиеновых цепей разной длины, имеющих единую систему сопряжения кратных связей. Атомы углерода в sp3 валентном состоянии, присутствующие в структуре пленок, должны нарушать сопряжение кратных связей, приводя к локализации указанных систем сопряжения, поэтому от их содержания зависит размер p-связанных кластеров [9]. Предложенное описание структуры а-С:Н позволяет удовлетворительно объяснить природу резонансных КР спектров и характер наблюдаемых в них изменений, а также электронные свойства пленок, определяемые p-p* электронными переходами в отдельных кластерах.

Исследования пленок a-C:H методом  декорирования островковыми пленками Ag их поверхности показали, что размер центров кристаллизации изменялся от 4 до 100 нм в зависимости от толщины пленки, условий получения и исходного углеводорода. Активными центрами кристаллизации Ag на поверхности исследуемых пленок являются p-связанные углеводородные кластеры [10]. Наблюдаемое увеличение размера частиц серебра с ростом толщины пленки a-C:H обусловлено влиянием p-связанных кластеров, находящихся в объеме [11].

Информация о работе Структурные особенности и оптические свойства тонких слоев аморфного гидрогенизированного углерода