Содержание тяжелых металлов в пробах снега в зоне влияния Кирово-Чепецкого химического комбината

Автор работы: Пользователь скрыл имя, 14 Сентября 2011 в 21:55, курсовая работа

Описание работы

Присутствие кадмия в водной среде обусловлено его поступлением вследствие выщелачивания горных пород и почв, а также со сточными водами предприятий горнодобывающей, металлургической и химической промышленности. В незагрязненных речных и озерных водах кадмий присутствует в низких концентрациях - доли и единицы микрограммов в кубическом дециметре.

Содержание работы

1.Введение
2.Задачи
3. Глава I

3.1. Метод атомно-абсорбционной спектрометрии

3.2. Метод вольтамперометрии

4. Глава II

4.1. Пробоотбор

4.2. Методика проведения химического анализа

4.2.1. Методика атомно-абсорбционной спектрометрии и обработка результатов

4.2.2. Методика вольтамперометрии и обработка результатов

5. Глава III

5.1. Результаты и их обсуждение

5.2. Заключение

6. Список литературы.

Файлы: 1 файл

Курсовая Кулябин Александр Николаевич.doc

— 1.30 Мб (Скачать файл)

     МИНОБРНАУКИ РОССИИ

ВЯТСКИЙ ГОСУДАРСТВЕННЫЙ  ГУМАНИТАРНЫЙ УНИВЕРСИТЕТ

Химический  факультет 

Кафедра химии 
 
 

Курсовая  работа на тему:

«Содержание тяжелых металлов в пробах снега в зоне влияния Кирово-Чепецкого химического комбината» 
 
 
 
 
 
 

Выполнил:

студент 4 курса

Кулябин Александр Николаевич 

Научный руководитель:

доцент  кафедры химии, к.б.н.

 Скугорева  Светлана Геннадиевна 
 
 
 

Киров, 2011

 

      Содержание

  1. Введение
  2. Задачи

     3. Глава I

     3.1. Метод атомно-абсорбционной спектрометрии

     3.2. Метод вольтамперометрии

     4. Глава II

     4.1. Пробоотбор

     4.2. Методика проведения химического анализа

    4.2.1. Методика атомно-абсорбционной спектрометрии и обработка результатов

     4.2.2. Методика вольтамперометрии и обработка результатов

     5. Глава III

     5.1. Результаты и их обсуждение

     5.2. Заключение

     6. Список литературы.

 

      Введение:

    1. Актуальность.

     Присутствие кадмия в водной среде обусловлено  его поступлением вследствие выщелачивания  горных пород и почв,  а  также  со сточными  водами предприятий  горнодобывающей,  металлургической и химической промышленности.  В незагрязненных речных и озерных  водах кадмий присутствует в  низких  концентрациях - доли и единицы  микрограммов в кубическом дециметре.

     В поверхностных водах суши соединения кадмия находятся в растворенном и взвешенном состоянии.  В состав взвеси входят,  как правило, сорбированные формы. В растворенном состоянии кадмий существует в ионной форме, а также в виде неорганических и органических комплексов.  В кислых водах преобладающей является наиболее токсичная ионная форма кадмия.

    1. Действие на окружающую среду и человека:

     Кадмий  обнаруживается в организмах практически  всех животных (у наземных около 0,5 мг на 1 кг массы, а у морских - от 0,15 до 3 мг/кг). Вместе с тем его относят к наиболее токсичным тяжелым металлам. Кадмий сосредотачивается в организме преимущественно в почках и печени, при этом содержание кадмия в организме к старости повышается. Он накапливается в виде комплексов с белками, которые участвуют в ферментативных процессах. Попадая в организм извне, кадмий оказывает ингибирующее действие на целый ряд ферментов, разрушая их. Его действие основано на связывании группы -SH цистеиновых остатков в белках и ингибировании SH-ферментов. Он может также ингибировать действие цинксодержащих ферментов, замещая цинк. Из-за близости ионных радиусов кальция и кадмия, он может замещать кальций в костной ткани.

     Люди  отравляются кадмием, употребляя воду, загрязненную кадмиесодержащими отходами, а также овощи и зерновые, растущие на землях, расположенных вблизи от нефтеперегонных заводов и металлургических предприятий. Особой способностью накапливать кадмий отличаются грибы. По некоторым сведениям, содержание кадмия в грибах может достигать единиц, десятков и даже 100 и более миллиграммов на кг собственной массы. Соединения кадмия есть среди вредных веществ, находящихся в табачном дыме (одна сигарета содержит 1-2 мкг кадмия).

     Классическим  примером хронического отравления кадмием  является заболевание, впервые описанное  в Японии в 1950-е и получившее название «итай-итай». Болезнь сопровождалась сильными болями в поясничной области, болью в мышцах. Появлялись и характерные признаки необратимого поражения почек. Были зафиксированы сотни смертельных исходов «итай-итай». Заболевание приняло массовый характер в силу высокой загрязненности окружающей среды в Японии в то время и специфики питания японцев - преимущественно рисом и морепродуктами (они способны накапливать кадмий в высоких концентрациях). Исследования показали, что заболевшие «итай-итай» потребляли до 600 мкг кадмия в сутки. В дальнейшем в результате мероприятий по охране окружающей среды, частота и острота синдромов, подобных «итай-итай» заметно снизилась.

     В США была обнаружена зависимость  между содержанием кадмия в атмосфере  и частотой смертельных случаев  от сердечно-сосудистых заболеваний.

     Считают, что без вреда для здоровья в организм человека в сутки может поступать около 1 мкг кадмия на 1 кг собственного веса. В питьевой воде кадмия не должно содержаться более 0,01 мг/л. Противоядием при отравлении кадмием является селен, однако употребление продуктов, богатых этим элементом, приводит к понижению содержания серы в организме, и в этом случае кадмий снова становится опасным.

     Основные  источники кадмия - промежуточные  продукты цинкового производства. Осадки металлов, полученные после очистки  растворов сульфата цинка действием цинковой пыли, содержат 2-12% кадмия. Во фракциях, образующихся при дистилляционном получении цинка, содержится 0,7-1,1%о кадмия, а во фракциях, полученных при ректификационной очистке цинка - до 40%> кадмия. Кадмий извлекают и из пыли свинцовых и медеплавильных заводов (она может содержать до 5% и 0,5%о кадмия, соответственно). Пыль обычно обрабатывают концентрированной серной кислотой, а затем сульфат кадмия выщелачивают водой. 

   Задачи

  • Проанализировать особенности методов определения тяжелых металлов: метода инверсионной вольтамперометрии и атомно-абсорбционной спектрометрии
  • Провести пробоподготовку проб снега к анализу методом инверсионной-вольтамперомтерии
  • Осуществить анализ проб на содержание тяжелых металлов методом инверсионной-вольтамперометрии
  • Обработать и обсудить полученные данные
  • Сравнить данные, полученные вольтамперомтерическим методом с результатами полученными на атомно-абсорбционном спектрометре
  • Сформулировать выводы по проделанной работе

 

     Глава I. Обзор методов

  1. Метод вольтамперометрии

     Вольтамперометрия - совокупность электрохимических методов исследования и анализа, основанных на изучении зависимости силы тока в электролитической ячейке от потенциала погруженного в анализируемый раствор индикаторного микроэлектрода, на котором реагирует исследуемое электрохимически активное (электроактивное) вещество. В ячейку помещают помимо индикаторного вспомогательный электрод со значительно большей поверхностью, чтобы при прохождении тока его потенциал практически не менялся (неполяризующийся электрод). Разность потенциалов индикаторного и вспомогательного электродов Е описывается уравнением Е = U IR, где U - поляризующее напряжение, R - сопротивление раствора, I - ток в электохимической ячейке. В анализируемый раствор вводят в большой концентрации индифферентный фоновый электролит, чтобы, во-первых, уменьшить величину R и, во-вторых, исключить миграционный ток, вызываемый действием электрического поля на электроактивные вещества. При низких концентрациях этих веществ изменение омического сопротивления электролита в ячейке и падения напряжения IR в растворе очень мало. Для полной компенсации изменения омического сопротивления и падения напряжения применяют потенциостатирование и трехэлектродные ячейки, содержащие дополнительно электрод сравнения.

     В качестве индикаторных электродов используют стационарные и вращающиеся электроды - из металла (серебро, золото, платина), углеродных материалов (графит), а также капающие электроды (из ртути, амальгам, галлия). Последние представляют собой капилляры, из которых по каплям вытекает жидкий металл.

     Вольтамперометрия с использованием капающих электродов, потенциал которых меняется медленно и линейно, называют полярографией. Электродами сравнения служат обычно электроды второго рода, например каломельный или хлоросеребряный.

     Циклическая вольтамперометрия (вольтамперометрия с относительно быстрой треугольной разверткой потенциала) позволяет изучать кинетику и механизм электродных процессов путем наблюдения на экране компьютера или диаграмме потенциометра вольтамперограмм, отражающих концентрации анализируемых компонентов и электрохимические реакции продуктов электролиза.

     Для всех вариантов вольтамперометрии используют способ снижения Сn, основанный на предварительном электрохимическом, адсорбционном или химическом накоплении определяемого компонента раствора на поверхности или в объеме стационарного микроэлектрода, с последующей регистрацией вольтамперограммы, отражающей электрохимическую реакцию продукта накопления. Эту разновидность вольтамперометрии называют инверсионной. В инверсионной вольтамперометрии с предварительным накоплением, достигает 10-9-10-11. Минимальные значения Сn получают, используя углеродные и тонкопленочные ртутные индикаторные электроды, в т.ч. ртутно-графитовые, состоящие из мельчайших капелек ртути, электролитически выделенных на подложку из специально обработанного графита.

    Вольтамперометрию применяют:

  • для количественного анализа неорганических и органических веществ в очень широком интервале содержаний - от 10-10 % до десятков %;
  • для исследования кинетики и механизма электродных процессов, включая стадию переноса электрона, предшествующие и последующие химической реакции, адсорбцию исходных продуктов и продуктов электрохимических реакций и т. п.;
  • для изучения строения двойного электрического слоя, равновесия комплексообразования в растворе, образования и диссоциации интерметаллических соединений в ртути и на поверхности твердых электродов; для выбора условий амперометрического титрования и др. .

 

  1. Атомно-абсорбционная спектрометрия

     Атомно-абсорбционные  спектрометры выпускаются с атомизаторами  различного типа: пламенными и электротермическими.

Схема спектрометра, использующего пламенный атомизатор, представлена на рис. 1. Такой спектрометр состоит из источника излучения (1), атомизатора - пламени (2), монохроматора (3) и детектора - приемника света (4), также имеется двухлинзовая оптическая система (5).

      

Рис.1. Схема атомно-абсорбционного спектрометра с пламенной атомизацией пробы.

 

     При анализе методом атомной абсорбции в спектрометрах с разными видами атомизаторов в качестве источника первичного излучения линейчатого спектра часто используют лампы с полым катодом (ЛПК), содержащим определяемый элемент. Лампа с полым катодом представляет собой цилиндрический стеклянный баллон с кварцевым или стеклянным окошком, заполненный аргоном или неоном (давление ~ 102 Па), в котором происходит испарение вещества и возбуждение атомов элемента при электрическом заряде в атмосфере инертного газа. Лампа с полым катодом испускает интенсивные узкие линии элемента, входящего в состав катода.

     Анод такой лампы - металлическая вольфрамовая проволока, находящаяся рядом с катодом. Катод представляет собой полый цилиндр, изготовленный из определяемого элемента или его сплава. Катод и анод размещены в стеклянном цилиндре. Когда на электроды лампы подается напряжение от высокоточного выпрямителя около 600 В, газ ионизируется. Катионы газа выбивают из катода атомы определяемого элемента и возбуждают их термически. При обратном переходе возбужденных атомов в основное состояние излучается свет определенных длин волн. В спектре свечения при температуре 800 К в полом катоде наблюдаются резонансные частоты элемента.

     Металл, используемый для изготовления ламп с полым катодом, должен быть высокой  чистоты и не содержать адсорбированный водород. Работу лампы ухудшается из-за снижения давления газа вследствие частичной его сорбции на катоде.

     Для атомизации в атомно-абсорбционном анализе до последнего времени чаще всего использовали пламя (2), представляющее собой низкотемпературную плазму (пламя горючих газов в смеси с окислителями). При этом необходимыми условиями являлись прозрачность пламени во всем спектральном интервале; слабое собственное излучение пламени; большая эффективность атомизации элемента в пламени. Наибольшее распространение получили пламя "воздух - ацетилен" (Тmах = 2300 °С) и "оксид азота N20 - ацетилен" (Тmах = 2950 °С). Первое обеспечивает высокую эффективность атомизации более 30 элементов, в том числе щелочных и щелочно-земельных; во втором возможно определении почти всех элементов периодической системы, но оно имеет интенсивное собственное излучение в некоторых участках спектра, для устранения которого к пробе добавляется легко ионизирующий металл. В атомно-абсорбционной спектроскопии пламя формируется в горелке с длинной щелью, чтобы увеличить длину поглощающего света.

Информация о работе Содержание тяжелых металлов в пробах снега в зоне влияния Кирово-Чепецкого химического комбината