Физиологические особенности циклических видов спорта

Автор работы: Пользователь скрыл имя, 27 Сентября 2010 в 07:44, Не определен

Описание работы

Введение
1. Классификации мышечной деятельности
1.1 Мощность выполняемой работы и энергообеспечение мышечного сокращения
1.1.1 Зона максимальной мощности работы
1.1.2 Зона субмаксимальной мощности работы
1.1.3 Зона большой мощности работы
1.1.4 Зона умеренной мощности работы
2. Физиологические изменения в организме под влиянием циклических видов спорта
2.1 Физиологические изменения в сердечнососудистой системе
2.2 Физиологические изменения в дыхательной системе
2.3 Физиологические изменения в опорно-двигательном аппарате
2.4 Физиологические изменения в нервной системе
2.5 Физиологические изменения в обмене веществ организма и в железах внутренней секреции
3. Характеристика процессов утомления и восстановления в циклических видах спорта
3.1 Физиологические и биохимические основы утомления при занятиях легкой атлетикой
3.2 Течение восстановительных процессов в организме спортсменов после занятия легкой атлетикой
Заключение
Список литературы

Файлы: 1 файл

кусовая.doc

— 304.00 Кб (Скачать файл)

     Виды  утомления. В развитии утомления различают скрытое (преодолеваемое) утомление, при котором сохраняется высокая работоспособность, поддерживаемая волевым усилием. Экономичность двигательной деятельности в этом случае падает, работа выполняется с большими энергетическими затратами. Это компенсируемая форма утомления. При дальнейшем выполнении работы развивается некомпенсированное (полное) утомление. Главным признаком этого состояния является снижение работоспособности. При некомпенсированном утомлении угнетаются функции надпочечников, снижается активность дыхательных ферментов, происходит вторичное усиление процессов анаэробного гликолиза.

     Различают 3 стадии утомления. В частности, при выполнении физической нагрузки в первой стадии утомления по сравнению с выполнением таковой в "устойчивом" состоянии происходят более глубокие сдвиги в показателях сердечнососудистой и дыхательной систем. Во второй стадии утомления наблюдается дальнейшее снижение биоэлектрической активности коры большого мозга и более напряженная деятельность сердечнососудистой и дыхательной систем. Третья стадия утомления характеризуется снижением биоэлектрической активности коры большого мозга (до 22% по сравнению с предыдущими двумя стадиями утомления) и ухудшением функционирования сердечнососудистой и дыхательной систем.

     В работающих мышцах при утомлении происходит исчерпание запасов энергетических субстратов (АТФ, КФ, гликоген), накапливаются продукты распада (молочная кислота, кетоновые тела) и отмечаются резкие сдвиги внутренней среды организма. При этом нарушается регуляция процессов, связанных с энергетическим обеспечением мышечного сокращения, появляются выраженные изменения в деятельности систем легочного дыхания и кровообращения.

     Как известно запасы АТФ в мышцах незначительны, их едва хватает на 1 с напряженной  мышечной работы. Запасов креатинфосфата (КФ), используемого для ресинтеза АТФ при работе максимальной интенсивности, хватает всего на 6-8 с. Снижение скорости ресинтеза АТФ может явиться причиной наступающего утомления.

     В скелетной мышце человека после  максимальной кратковременной работы до отказа концентрация КФ падает почти до нуля, а концентрация АТФ - примерно до 60-70% значения в состоянии покоя.

     В состоянии утомления снижается  концентрация АТФ в нервных клетках  и нарушается синтез ацетилхолина в  синаптических образованиях, в результате чего нарушается деятельность ЦНС по формированию двигательных импульсов и передаче их к работающим мышцам; замедляется скорость переработки сигналов, поступающих от проприо- и хеморецепторов; в моторных центрах развивается охранительное торможение, связанное с образованием гамма-аминомасляной кислоты.

     При утомлении в процессе тренировок угнетается деятельность желез внутренней секреции, что ведёт к уменьшению выработки гормонов и снижению активности ряда ферментов. Прежде всего, это сказывается на миофибриллярной АТФ-азе, контролирующей преобразование химической энергии в механическую работу. При снижении скорости расщепления АТФ в миофибриллах автоматически уменьшается и мощность выполняемой работы. В состоянии утомления уменьшается активность ферментов аэробного окисления и нарушается сопряжение реакций окисления с ресинтезом АТФ. Для поддержания необходимого уровня АТФ происходит вторичное усиление гликолиза, сопровождающееся закислением внутренних сред и нарушением гомеостаза. Усиливающийся катаболизм белковых соединений сопровождается повышением содержания мочевины в крови.

     Максимальная  физическая нагрузка большой длительности приводит организм спортсмена к увеличению продуцирования в мышечных клетках  молочной кислоты, диффундирующей затем  в крови и вызывающей изменения кислотно-щелочного равновесия. Снижение рН внутренней среды влияет на активность ряда ферментов, которая бывает наивысшей в слабощелочной среде (рН = 7,35 - 7,40). Снижение рН в процессе физической нагрузки максимальной и субмаксимальной интенсивности приводит к уменьшению активности многих ферментов, в частности фосфофруктокиназы, АТФ-азы. У спортсменов величина рН может составлять 6,9 и ниже (после нагрузки высокой интенсивности в течение 40-60 с) (Osnes J.-B., Hermansen L, 1997).

     Научные исследования показали, что важное значение в определении функционального состояния спортсменов играют показатели активности симпато-адреналовой системы (САС). Являясь интегральным нейро-гормональным индикатором, характеризующим стрессовую и эмоциональную реакцию спортсменов в ответ на тренировочные и соревновательные нагрузки, эта система играет важнейшую гомеостатическую и адаптационно-трофическую роль в организме. Её можно использовать для оценки текущего состояния, эмоционального напряжения, в предстартовом периоде и на соревнованиях, развития утомления и адаптационных процессов в организме.

     В исследовании В.В. Мехрикадзе (1985) было показано, что при кратковременной  интенсивной нагрузке(тренировке, направленной на увеличение скорости бега) по сравнению  с предтренировочным фоном наблюдалась достоверная активация гормонального и медиаторного звеньев САС. Было отмечено повышенное выделение адреналина (в 3 раза), норадреналина (в 1,5 раза), однако резервные возможности системы, существенно не изменялись.

     У спринтеров при нагрузке скоростной направленности САС преимущественно реагирует адреналовой реакцией. Это хорошо согласуется с известными представлениями о том, что адреналин -"гормон тревоги" ответствен за быструю мобилизацию энергетических ресурсов, быстрый переход организма из состояния покоя в состояние повышенной активности. 

     Таблица 4. Характеристика зон мощности в процессе выполнения физических упражнений

Характеристика  физиологических показателей Виды упражнений
Максимальной  анаэробной (анаэробной)

Утомление связано, прежде всего, с кислородно-транспортной системой, лимитирующей работоспособность. Энергообеспечение осуществляется за счет фосфагенной энергетической системы (АТФ+КФ) при некотором участии лактацидной (гликолитической) системы. "Средняя" лёгочная вентиляция не превышает 20-30% от максимальной. ЧСС повышается ещё до старта - 140-150, а после финиша - 160-180 уд/мин. Концентрация лактата в крови после работы составляет 5-8 ммоль/л. Перед выполнением упражнений несколько повышается концентрация глюкозы в крови. До и в процессе выполнения упражнений в крови повышается концентрация катехоламинов и гормона роста, снижается концентрация инсулина. Кислородный запрос может составлять 7-14 л, а кислородный долг- 6-12 л, то есть 90-95% от кислородного долга

Бег на 100 м, спринтерская велогонка на треке, плавание и ныряние  на дистанцию до 50 м. Продолжительность - до 30 с
Околомаксимальной анаэробной (смешанной)

Утомление связано  прежде всего с кислородно-транспортной системой, лимитирующей работоспособность. Предстартовое повышение ЧСС - до 150-160, после финиша пульс достигает 180-190 уд/мин. В процессе выполнения упражнений легочная вентиляция растёт и к завершению достигает 50-60% от максимальной рабочей вентиляции для данного спортсмена (60-80 л/мин.). Возрастает скорость потребления O2 и достигает 70-80% от индивидуального МПК. Концентрация лактата в крови после упражнения высокая - до 15 ммоль/л. Она тем выше, чем больше дистанция и выше квалификация спортсмена. Концентрация глюкозы повышена - до 100-120 мг%

Бег на 200-400 м, плавание на дистанциях до 100 м, бег на коньках  на 500 м. Продолжительность от -20 до 50 с
Субмаксимальной анаэробной.

В развитии утомления  определяющим фактором является недостаточное  снабжение мышц кислородом (энергетическое обеспечение идёт за счёт анаэробного гликолиза). Кислородный запрос может достигать 20-40 л, а уровень энергетических затрат в 4-5 раз превышает максимум аэробного производства энергии. ЧСС, сердечный выброс, лёгочная вентиляция могут быть близки к максимальным значениям для конкретного спортсмена. Концентрация лактата в рабочих мышцах и крови - до 20-25 ммоль/л. Соответственно рН крови снижается до 7,0. Повышается глюкоза в крови - до 1 50 мг%. Высоко содержание в плазме крови катехоламинов и гормона роста. Под влиянием продуктов анаэробного распада меняется проницаемость клеточных мембран для белков, увеличивается их содержание в крови, они могут выходить в мочу, где их концентрация достигает 1 ,5%.

Бег на 800 м, плавание на 200 м, бег на коньках на 1000 и 1500 м, заезды на 1 км в велоспорте (трек). Продолжительность - от 1 до 2 мин
 

     В заключение следует подчеркнуть, что  напряженная и длительная физическая нагрузка обязательно сопровождается той или иной степенью утомления, которое, в свою очередь, вызывает процессы восстановления, стимулирует адаптационные перестройки в организме. Соотношение утомления и восстановления и есть, по существу, физиологическая основа процесса спортивной тренировки.

     3.2 Течение восстановительных процессов в организме спортсменов после занятия легкой атлетикой

 

     Ещё И.П. Павловым были вскрыты ряд закономерностей течения восстановительных процессов, не потерявших значения в настоящее время.

     1. В работающем органе наряду  с процессами разрушения и  истощения происходит процесс  восстановления, он наблюдается  не только после окончания  работы, но уже и в процессе  деятельности.

     2. Взаимоотношения истощения и  восстановления определяются интенсивностью работы; во время интенсивной работы восстановительный процесс не в состоянии полностью компенсировать расход, поэтому полное возмещение потерь наступает позднее, во время отдыха.

     3. Восстановление израсходованных  ресурсов происходит не до  исходного уровня, а с некоторым избытком (явление избыточных компенсаций).

     Взгляды И.П. Павлова развил его ученик Ю.В. Фольборт (1951), который заключил, что повторные физические нагрузки могут вести к развитию двух противоположных состояний:

     если  каждая последующая нагрузка приходится на ту фазу восстановления, в которой организм достиг исходного состояния, то развивается состояние тренированности, возрастают функциональные возможности организма; если же работоспособность ещё не вернулась к исходному состоянию, то новая нагрузка вызывает противоположный процесс - хроническое истощение. Постепенное исчезновение явлений утомления, возвращение функционального статуса организма и его работоспособности к дорабочему уровню либо превышение последнего соответствует периоду восстановления. Продолжительность этого периода зависит от характера и степени утомления, состояния организма, особенностей его нервной системы, условий внешней среды. В зависимости от сочетания перечисленных факторов восстановление протекает в различные сроки - от минут до нескольких часов или суток при наиболее напряжённой и длительной работе.

     В зависимости от общей направленности биохимических сдвигов в организме и времени, необходимом для их возвращения к норме, выделяются два типа восстановительных процессов - срочное и отставленное. Срочное восстановление распространяется на первые 0,5-1,5 часа отдыха после работы; оно сводится к устранению накопившихся за время упражнения продуктов анаэробного распада и оплате образовавшегося долга; отставленное восстановление распространяется на многие часы отдыха после работы. Оно заключается в усиливающихся процессах пластического обмена и реставрации нарушенного во время упражнения ионного и эндокринного равновесия в организме. В период отставленного восстановления завершается возвращение к норме энергетических запасов организма, усиливается синтез разрушенных при работе структурных и ферментных белков. В целях рационального чередования нагрузок необходимо учитывать скорость протекания восстановительных процессов в организме спортсменов после отдельных упражнений, их комплексов, занятий, микроциклов. Известно, что восстановительные процессы после любых нагрузок протекают разновременно, при этом наибольшая интенсивность восстановления наблюдается сразу после нагрузок. По данным В.М. Зациорского (1990), при нагрузках разной направленности, величины и продолжительности в течение первой трети восстановительного периода протекает около 60%, во второй -30% и в третьей - 10% восстановительных реакций. Восстановление функций после работы характеризуется рядом существенных особенностей, которые определяют не только процесс восстановления, но и преемственную взаимосвязь с предшествующей и последующей работой, степени готовности к повторной работе. К числу таких особенностей относят: неравномерное течение восстановительных процессов; фазность восстановления мышечной работоспособности; гетерохронность (неодновременность) восстановления различных вегетативных функций; неодинаковое восстановление вегетативных функций, с одной стороны, и мышечной работоспособности - с другой. 

     Таблица 5. Время, необходимое для завершения восстановления различных биохимических процессов в период отдыха после напряжённой мышечной работы

Процессы Время восстановления
Восстановление  О2 – запасов в организме 10-15с
Восстановление  алактатных анаэробных резервов в мышцах 2-5мин
Оплата  алактатного О2 - долга 3-5 мин
Устранение  молочной кислоты 0,5-1,5ч
Оплата  лактатного О2 - долга 0,5-1, 5ч
Ресинтез  внутримышечных запасов гликогена 12-48ч
Восстановление  запасов гликогена в печени 12-48ч
Усиление  индуктивного синтеза ферментных и  структурных белков 12-72ч
 

     Интенсивность протекания восстановительных процессов  и сроки восполнения энергетических запасов организма зависят от интенсивности их расходования во время  выполнения упражнения (правило В.А. Энгельгартда). Интенсификация процессов восстановления приводит к тому, что в определенный момент отдыха после работы запасы энергетических веществ превышают их дорабочий уровень. Это явление получило название суперкомпенсации, или сверхвосстановления. Протяженность фазы суперкомпенсации во времени зависит от общей продолжительности выполнения работы и глубины вызываемых ею биохимических сдвигов в организме.

     Практика  доказала, что только совокупное использование  педагогических, медико-биологических, психологических средств и методов может составить наиболее эффективную систему восстановления.

 

     Заключение

 

     Итак, в ходе выполнения данной работы цели, поставленные во введении, я считаю выполненными.

     В первой части работы я подробно охарактеризовала работу мышечной системы, раскрыла классификации мышечной деятельности и основные зоны мощности. Вторая часть работы посвящена описанию влияния циклических видов спорта на организм человека. В заключительной главе моей курсовой работы я проанализировала процессы утомления и восстановления, которые всегда сопутствуют тренировке по легкой атлетики.

Информация о работе Физиологические особенности циклических видов спорта