Автор работы: Пользователь скрыл имя, 19 Февраля 2015 в 18:33, контрольная работа
Противоречие между вторым началом термодинамики и примерами высокоорганизованного окружающего нас мира было разрешено с появлением более пятидесяти лет назад и последующим естественным развитием нелинейной неравновесной термодинамики. Ее еще называют термодинамикой открытых систем. Большой вклад в становление этой новой науки внесли И.Р.Пригожин, П.Гленсдорф, Г.Хакен. Бельгийский физик русского происхождения Илья Романович Пригожин за работы в этой области в 1977 году был удостоен Нобелевской премии.
ВВЕДЕНИЕ
ГЛАВА 1
ОСНОВНЫЕ ПОНЯТИЯ И ИСХОДНЫЕ ПОЛОЖЕНИЯ ТЕРМОДИНАМИКИ
1.1. Закрытые и открытые термодинамические системы.
1.2. Нулевое начало термодинамики.
1.3. Первое начало термодинамики.
1.4. Второе начало термодинамики.
1.4.1. Обратимые и необратимые процессы.
1.4.2. Энтропия.
1.5. Третье начало термодинамики.
ГЛАВА 2
ОСНОВНЫЕ ПОНЯТИЯ И ПОЛОЖЕНИЯ СИНЕРГЕТИКИ.
САМООРГАНИЗАЦИЯ РАЗЛИЧНЫХ СИСТЕМ.
2.1. Общая характеристика открытых систем.
2.1.1. Диссипативные структуры.
2.2. Самоорганизация различных систем и синергетики.
2.3. Примеры самоорганизации различных систем.
2.3.1. Физические системы.
2.3.2. Химические системы.
2.3.3. Биологические системы.
2.3.4. Социальные системы.
Постановка задачи.
ГЛАВА 3
АНАЛИТИЧЕСКИЕ И ЧИСЛЕННЫЕ ИССЛЕДОВАНИЯ САМООРГАНИЗАЦИИ РАЗЛИЧНЫХ СИСТЕМ.
3.1. Ячейки Бенара.
3.2. Лазер, как самоорганизованная система.
ЗАКЛЮЧЕНИЕ.
ЛИТЕРАТУРА.
dSe q q
¾ = ¾ - ¾ = q * ¾¾¾ < 0 (3.1)
dt T2 T1
Образование именно сотовой ячеистой структуры объясняется минимальными затратами энергии в системе на создание именно такой формы пространственной структуры . При этом в центральной части ячейки жидкость движется вверх , а на ее периферии - вниз.
Дальнейшее сверхкритическое нагревание жидкости приводит к разрушению пространственной структуры - возникает хаотический турбулентный режим.
Рис. 3.2. Иллюстрация возникновения тепловой
конвекции в жидкости .
К этому вопросу прикладывается наглядная иллюстрация возникновения тепловой конвекции в жидкости .
3.2 ЛАЗЕР , КАК САМООРГАНИЗУЮЩАЯСЯ СИСТЕМА.
Во второй главе этот вопрос мы уже рассматривали . Здесь же , рассмотрим простую модель лазера .
Лазер - это устройство , в котором в процессе стимулированного излучения порождаются фотоны .
Изменение со временем числа фотонов n , или другими словами , скорость порождения фотонов , определяется уравнением вида :
dn / dt = «Прирост» - «Потери» (3.2)
Прирост обусловлен так называемым стимулированном излучением . Он пропорционален числу уже имеющихся фотонов и числу возбужденных атомов N . Таким образом :
Прирост = G N n (3.3)
Здесь G - коэффициент усиления , который может быть получен из микроскопической теории . Член , описывающий потери , обусловлен уходом фотонов через торцы лазера . Единственное допущение , которое мы принимаем , - это то , что скорость ухода пропорциональна числу имеющихся фотонов . Следовательно ,
Потери = 2cn (3.4)
2c = 1/ t0 , где t0 - время жизни фотона в лазере .
Теперь следует учесть одно важное обстоятельство , которое делает (2.1) нелинейным уравнением вида :
Число возбужденных атомов уменьшается
за счет испускания фотонов . Это уменьшение DN
DN = an (3.6)
Таким образом , число возбужденных атомов равно
N = N0 - DN (3.7)
где N0 - число возбужденных атомов , поддерживаемое внешней
накачкой , в отсутствии лазерной генерации.
Подставляя (3.3) - (3.7) в (3.2) , получаем основное уравнение нашей упрощенной лазерной модели :
где постоянная k дает выражение :
k1 = aG
k = 2c - GN0 >< 0 (3.9)
Если число возбужденных атомов N0 (создаваемых накачкой) невелико , то k положительно , в то время как при достаточно больших N0 k - может стать отрицательным . Изменение знака происходит когда
GN0 = 2c (3.
Это условие есть условие порога лазерной генерации .
Из теории бифуркации следует , что при k > 0 лазерной генерации нет , в то время как при k < 0 лазер испускает фотоны.
Ниже или выше порога лазер работает в совершено разных режимах .
Решим уравнение (3.8) и проанализируем его аналитически :
- это уравнение одномодового лазера .
Запишем уравнение (3.8) в следующем виде :
Разделим исходное уравнение на n2 .
и введем новую функцию Z :
1/n = n-1 = Z Þ Z1 = - n-2 следовательно уравнение примет вид :
перепишем его в следующем виде :
разделим обе части данного уравнения на -1 , получим
Уравнение (3.11) - это уравнение Бернулли , поэтому сделаем следующую замену Z = U×V , где U и V неизвестные пока функции n , тогда Z1 = U1 V + U V1 .
Уравнение (3.11) , после замены переменных , принимает вид
U1 V + UV1 - k UV = k1
преобразуем , получим
U1 V + U(V1 - k V) = k1 (3.12)
Решим уравнение (3.12)
V1 - k V = 0 ® dV/dt = k V
сделаем разделение переменных dV/V =k dt ® ln V = k t
результат V = ekt (3.13)
Отсюда мы можем уравнение (3.12) переписать в виде :
U1 ekt = k1
- это то же самое , что dU/dt = k1e-kt , dU = k1e -kt dt выразим отсюда U , получим
По уравнению Бернулли мы делали замену Z = U V подставляя уравнения (3.13) и (3.14) в эту замену , получим
Ранее вводили функцию Z = n-1 , следовательно
Начальное условие n0=1/(c-k1/k) , из этого условия мы можем определить константу с следующим образом
Подставляя , найденную нами константу в уравнение (3.15) , получим
Исследуем функцию (3.16) при k = 0 , k < 0 , k > 0 .
При k®0 ; ekt ® 0 ; (ekt - 1)®0 , то есть (ekt - 1)×k1/k®0×¥(неопределенность)
n(k)при k®0 ® 0 , следовательно
Перепишем (3.16) в следующем виде
Линеаризуем нелинейное уравнение , получим
ln n = - kt + c Þ
При k = 0 уравнение (3.8) примет вид
решая его , получим
ЗАКЛЮЧЕНИЕ.
Мы видели , что необратимость времени тесно связана с неустойчивостями в открытых системах . И.Р. Пригожин определяет два времени . Одно - динамическое , позволяющее задать описание движения точки в классической механике или изменение волновой функции в квантовой механике . Другое время - новое внутренние время , которое существует только для неустойчивых динамических систем . Оно характеризует состояние системы , связанное с энтропией .
Процессы биологического или общественного развития не имеют конечного состояния . Эти процессы неограниченны . Здесь , с одной стороны , как мы видели , нет какого-либо противоречия со вторым началом термодинамики , а с другой стороны - четко виден поступательный характер развития (прогресса) в открытой системе. Развитие связано , вообще говоря , с углублением неравновесности , а значит , в принципе с усовершенствованием структуры . Однако с усложнением структуры возрастает число и глубина неустойчивостей , вероятность бифуркации .
Мы понимаем , что все приведенные в работе примеры относятся к модельным задачам , и многим профессионалам , работающим в соответствующих областях науки , они могут показаться слишком простыми . В одном они правы :использование идей и представлений синергетики не должно подменять глубокого анализа конкретной ситуации . Выяснить , каким может быть путь от модельных задач и общих принципов к реальной проблеме - дело специалистов. Кратко можно сказать так : если в изучаемой системе можно выделить один самый важный процесс (или небольшое их число) , то проанализировать его поможет синергетика . Она указывает направление , в котором нужно двигаться . И , по-видимому , это уже много.
Исследование большинства реальных нелинейных задач было невозможно без вычислительного эксперимента , без построения приближенных и качественных моделей изучаемых процессов (синергетика играет важную роль в их создании). Оба подхода дополняют друг друга . Эффективность применения одного зачастую определяется успешным использованием другого . Поэтому будущее синергетики тесно связано с развитием и широким использованием вычислительного эксперимента .
ЛИТЕРАТУРА :
1. Базаров И.П. Термодинамика. - М.: Высшая школа, 1991 г.
2. Гленсдорф П. , Пригожин И. Термодинамическая теория структуры , устойчивости и флуктуаций. - М.: Мир, 1973 г.
3. Карери Д. Порядок и беспорядок в структуре материи. - М.: Мир, 1995 г.
4. Курдюшов С.П. , Малинецкий Г.Г. Синергетика - теория самоорганизации. Идеи , методы перспективы. - М.: Знание, 1983 г.
5. Николис Г. , Пригожин И. Самоорганизация в неравновесных системах. - М.:Мир, 1979 г.
6. Николис Г. , Пригожин И. Познание сложного. - М.: Мир, 1990 г.
7. Перовский И.Г. Лекции по теории дифференциальных уравнений. - М.: МГУ, 1980 г.
8. Попов Д.Е. Междисциплинарные связи и синергетика. - КГПУ, 1996 г.
9. Пригожин И. Введение в термодинамику необратимых процессов. - М.:Иностранная литература , 1960 г.
10. Пригожин И. От существующего к возникающему. - М.: Наука, 1985 г.
11. Синергетика , сборник статей. - М.: Мир, 1984 г.
12. Хакен Г. Синергетика . - М.: Мир , 1980 г.
13. Хакен Г. Синергетика . Иерархия неустойчивостей в самоорганизующихся системах и устройствах . - М.: Мир , 1985 г.
14. Шелепин Л.А. В дали от равновесия. - М.: Знание, 1987 г.
15. Эйген М. , Шустер П. Гиперцикл . Принципы самоорганизации макромолекул . - М.: Мир , 1982 г.
16. Эткинс П. Порядок и беспорядок в природе. - М.: Мир , 1987 г