Термодинамика

Автор работы: Пользователь скрыл имя, 19 Февраля 2015 в 18:33, контрольная работа

Описание работы

Противоречие между вторым началом термодинамики и примерами высокоорганизованного окружающего нас мира было разрешено с появлением более пятидесяти лет назад и последующим естественным развитием нелинейной неравновесной термодинамики. Ее еще называют термодинамикой открытых систем. Большой вклад в становление этой новой науки внесли И.Р.Пригожин, П.Гленсдорф, Г.Хакен. Бельгийский физик русского происхождения Илья Романович Пригожин за работы в этой области в 1977 году был удостоен Нобелевской премии.

Содержание работы

ВВЕДЕНИЕ
ГЛАВА 1
ОСНОВНЫЕ ПОНЯТИЯ И ИСХОДНЫЕ ПОЛОЖЕНИЯ ТЕРМОДИНАМИКИ
1.1. Закрытые и открытые термодинамические системы.
1.2. Нулевое начало термодинамики.
1.3. Первое начало термодинамики.
1.4. Второе начало термодинамики.
1.4.1. Обратимые и необратимые процессы.
1.4.2. Энтропия.
1.5. Третье начало термодинамики.
ГЛАВА 2
ОСНОВНЫЕ ПОНЯТИЯ И ПОЛОЖЕНИЯ СИНЕРГЕТИКИ.
САМООРГАНИЗАЦИЯ РАЗЛИЧНЫХ СИСТЕМ.
2.1. Общая характеристика открытых систем.
2.1.1. Диссипативные структуры.
2.2. Самоорганизация различных систем и синергетики.
2.3. Примеры самоорганизации различных систем.
2.3.1. Физические системы.
2.3.2. Химические системы.
2.3.3. Биологические системы.
2.3.4. Социальные системы.
Постановка задачи.
ГЛАВА 3
АНАЛИТИЧЕСКИЕ И ЧИСЛЕННЫЕ ИССЛЕДОВАНИЯ САМООРГАНИЗАЦИИ РАЗЛИЧНЫХ СИСТЕМ.
3.1. Ячейки Бенара.
3.2. Лазер, как самоорганизованная система.
ЗАКЛЮЧЕНИЕ.
ЛИТЕРАТУРА.

Файлы: 1 файл

Иследовательская Термодинамика.docx

— 236.43 Кб (Скачать файл)

dSe        q        q                  T1 - T2

¾   =   ¾  -   ¾    = q *    ¾¾¾    < 0      (3.1)

dt          T2        T1               T1 * T2   

Образование именно сотовой ячеистой структуры объясняется минимальными затратами энергии в системе на создание именно такой формы пространственной структуры . При этом в центральной части ячейки жидкость движется вверх , а на ее периферии - вниз.   

Дальнейшее сверхкритическое нагревание жидкости приводит к разрушению пространственной структуры - возникает хаотический турбулентный режим.

       

Рис. 3.2.   Иллюстрация возникновения тепловой                          

конвекции в жидкости .   

К этому вопросу прикладывается наглядная иллюстрация возникновения тепловой конвекции в жидкости .

 

3.2 ЛАЗЕР , КАК САМООРГАНИЗУЮЩАЯСЯ СИСТЕМА.   

 

Во второй главе этот вопрос мы уже рассматривали . Здесь же , рассмотрим простую модель лазера .   

Лазер - это устройство , в котором в процессе стимулированного излучения порождаются фотоны .   

Изменение со временем числа фотонов  n  , или другими словами , скорость порождения фотонов , определяется уравнением вида :                    

dn / dt  =  «Прирост» - «Потери»          (3.2)   

Прирост обусловлен так называемым стимулированном излучением . Он пропорционален числу уже имеющихся фотонов и числу возбужденных атомов  N . Таким образом :

Прирост  =  G N n             (3.3)    

Здесь  G  -  коэффициент усиления , который может быть получен из микроскопической теории . Член , описывающий потери , обусловлен уходом фотонов через торцы лазера . Единственное допущение , которое мы принимаем , - это то , что скорость ухода пропорциональна числу имеющихся фотонов . Следовательно ,

Потери  =  2cn          (3.4)

2c  =  1/ t0 , где  t0 - время жизни фотона в лазере .   

Теперь следует учесть одно важное обстоятельство , которое делает (2.1) нелинейным уравнением вида :

             (3.5)   

Число возбужденных атомов уменьшается за счет испускания фотонов . Это уменьшение  DN  пропорционально числу имеющихся в лазере фотонов , поскольку эти фотоны постоянно заставляют атомы возвращаться в основное состояние .

DN = an              (3.6)   

Таким образом , число возбужденных атомов равно

N = N0 - DN                (3.7)

где  N0 - число возбужденных атомов , поддерживаемое внешней              

накачкой , в отсутствии лазерной генерации.    

Подставляя (3.3) - (3.7) в (3.2) , получаем основное уравнение нашей упрощенной лазерной модели :

            (3.8)

где постоянная   k   дает выражение :

k1  =  aG         

k  =  2c - GN0  ><  0     (3.9)   

Если число возбужденных атомов  N0  (создаваемых накачкой) невелико , то  k положительно , в то время как при достаточно больших  N0  k - может стать отрицательным . Изменение знака происходит когда

GN0  =  2c               (3.10)   

Это условие есть условие порога лазерной генерации .   

Из теории бифуркации следует , что при  k > 0  лазерной генерации нет , в то время как при   k < 0  лазер испускает фотоны.   

Ниже или выше порога лазер работает в совершено разных режимах .   

Решим уравнение (3.8) и проанализируем его аналитически :

-  это уравнение одномодового лазера .    

Запишем уравнение (3.8) в следующем виде :

   

Разделим исходное уравнение на  n2 .

и введем новую функцию   Z :

1/n = n-1 = Z    Þ   Z1 = - n-2    следовательно уравнение примет вид :

перепишем его в следующем виде :

разделим обе части данного уравнения на  -1 , получим

           (3.11)   

Уравнение  (3.11)  - это уравнение  Бернулли , поэтому сделаем следующую замену   Z = U×V  , где  U  и  V  неизвестные пока функции  n  , тогда     Z1 = U1 V + U V1 .   

Уравнение (3.11)  , после замены переменных , принимает вид

U1 V + UV1 - k UV  =  k1

преобразуем , получим

U1 V + U(V1 - k V) = k1              (3.12)   

Решим уравнение (3.12)

V1 - k V = 0   ®   dV/dt = k V 

сделаем разделение переменных         dV/V =k dt    ®   ln V = k t

результат  V = ekt    (3.13)   

Отсюда мы можем уравнение (3.12) переписать в виде :

U1 ekt  = k1  

- это то же самое , что        dU/dt = k1e-kt      ,  dU = k1e -kt dt       выразим отсюда  U  , получим

      (3.14)

По уравнению Бернулли мы делали замену  Z = U V   подставляя уравнения (3.13) и (3.14) в эту замену , получим

   

Ранее вводили функцию        Z = n-1    , следовательно

        (3.15)   

Начальное условие      n0=1/(c-k1/k)  , из этого условия мы можем определить константу   с  следующим образом

   

Подставляя , найденную нами константу в уравнение (3.15) , получим

       (3.16)   

Исследуем функцию (3.16) при  k = 0 , k < 0 , k > 0 .   

При  k®0 ; ekt ® 0 ;  (ekt - 1)®0  , то есть  (ekt - 1)×k1/k®0×¥(неопределенность) , раскроем эту неопределенность по правилу Лопиталя . Эту неопределенность вида   0×¥   следует привести к виду     . При этом , как и всегда при применении правила Лопиталя , по ходу вычислений рекомендуется упрощать получившиеся выражения , следующим образом :

n(k)при  k®0 ® 0  , следовательно       

Перепишем  (3.16) в следующем виде

   

Линеаризуем нелинейное уравнение , получим

ln n = - kt + c   Þ      

 

 

   При  k = 0  уравнение (3.8)  примет вид

решая его , получим

           

 

ЗАКЛЮЧЕНИЕ.   

 

Мы видели , что необратимость времени тесно связана с неустойчивостями в открытых системах . И.Р. Пригожин определяет два времени . Одно - динамическое , позволяющее задать описание движения точки в классической механике или изменение волновой функции в квантовой механике . Другое время - новое внутренние время , которое существует только для неустойчивых динамических систем . Оно характеризует состояние системы , связанное с энтропией .   

Процессы биологического или общественного развития не имеют конечного состояния . Эти процессы неограниченны . Здесь , с одной стороны , как мы видели , нет какого-либо противоречия со вторым началом термодинамики , а с другой стороны - четко виден поступательный характер развития (прогресса) в открытой системе. Развитие связано , вообще говоря , с углублением неравновесности , а значит , в принципе с усовершенствованием структуры . Однако с усложнением структуры возрастает число и глубина неустойчивостей , вероятность бифуркации .   

Мы понимаем , что все приведенные в работе примеры относятся к модельным задачам , и многим профессионалам , работающим в соответствующих областях науки , они могут показаться слишком простыми . В одном они правы :использование идей и представлений синергетики не должно подменять глубокого анализа конкретной ситуации . Выяснить , каким может быть путь от модельных задач и общих принципов к реальной проблеме - дело специалистов. Кратко можно сказать так : если в изучаемой системе можно выделить один самый важный процесс (или небольшое их число) , то проанализировать его поможет синергетика . Она указывает направление , в котором нужно двигаться . И , по-видимому , это уже много.   

Исследование большинства реальных нелинейных задач было невозможно без вычислительного эксперимента , без построения приближенных и качественных моделей изучаемых процессов (синергетика играет важную роль в их создании). Оба подхода дополняют друг друга . Эффективность применения одного зачастую определяется успешным использованием другого . Поэтому будущее синергетики тесно связано с развитием и широким использованием вычислительного эксперимента .   

 

ЛИТЕРАТУРА :

1. Базаров И.П.  Термодинамика. - М.: Высшая школа, 1991 г.

2. Гленсдорф П. , Пригожин И.  Термодинамическая теория структуры , устойчивости и флуктуаций. - М.: Мир, 1973 г.

3. Карери Д.  Порядок и беспорядок в структуре материи. - М.: Мир, 1995 г.

4. Курдюшов С.П. , Малинецкий Г.Г.  Синергетика - теория самоорганизации. Идеи , методы перспективы. - М.: Знание, 1983 г.

5. Николис Г. , Пригожин И.  Самоорганизация в неравновесных системах. - М.:Мир, 1979 г.

6. Николис Г. , Пригожин И.  Познание сложного. - М.: Мир, 1990 г.

7. Перовский И.Г.  Лекции по теории дифференциальных уравнений. - М.: МГУ, 1980 г.

8. Попов Д.Е.  Междисциплинарные связи и синергетика. - КГПУ, 1996 г.

9. Пригожин И.  Введение в термодинамику необратимых процессов. - М.:Иностранная литература , 1960 г.

10. Пригожин И.  От существующего к возникающему. - М.: Наука, 1985 г.

11. Синергетика , сборник статей. - М.: Мир, 1984 г.

12. Хакен Г.  Синергетика . - М.: Мир , 1980 г.

13. Хакен Г.  Синергетика . Иерархия неустойчивостей в самоорганизующихся системах и устройствах . - М.: Мир , 1985 г.

14. Шелепин Л.А.  В дали от равновесия. - М.: Знание, 1987 г.

15. Эйген М. , Шустер П.  Гиперцикл . Принципы самоорганизации макромолекул . - М.: Мир , 1982 г.

16. Эткинс П.  Порядок и беспорядок в природе. - М.: Мир , 1987 г

 


Информация о работе Термодинамика