Термодинамика

Автор работы: Пользователь скрыл имя, 19 Февраля 2015 в 18:33, контрольная работа

Описание работы

Противоречие между вторым началом термодинамики и примерами высокоорганизованного окружающего нас мира было разрешено с появлением более пятидесяти лет назад и последующим естественным развитием нелинейной неравновесной термодинамики. Ее еще называют термодинамикой открытых систем. Большой вклад в становление этой новой науки внесли И.Р.Пригожин, П.Гленсдорф, Г.Хакен. Бельгийский физик русского происхождения Илья Романович Пригожин за работы в этой области в 1977 году был удостоен Нобелевской премии.

Содержание работы

ВВЕДЕНИЕ
ГЛАВА 1
ОСНОВНЫЕ ПОНЯТИЯ И ИСХОДНЫЕ ПОЛОЖЕНИЯ ТЕРМОДИНАМИКИ
1.1. Закрытые и открытые термодинамические системы.
1.2. Нулевое начало термодинамики.
1.3. Первое начало термодинамики.
1.4. Второе начало термодинамики.
1.4.1. Обратимые и необратимые процессы.
1.4.2. Энтропия.
1.5. Третье начало термодинамики.
ГЛАВА 2
ОСНОВНЫЕ ПОНЯТИЯ И ПОЛОЖЕНИЯ СИНЕРГЕТИКИ.
САМООРГАНИЗАЦИЯ РАЗЛИЧНЫХ СИСТЕМ.
2.1. Общая характеристика открытых систем.
2.1.1. Диссипативные структуры.
2.2. Самоорганизация различных систем и синергетики.
2.3. Примеры самоорганизации различных систем.
2.3.1. Физические системы.
2.3.2. Химические системы.
2.3.3. Биологические системы.
2.3.4. Социальные системы.
Постановка задачи.
ГЛАВА 3
АНАЛИТИЧЕСКИЕ И ЧИСЛЕННЫЕ ИССЛЕДОВАНИЯ САМООРГАНИЗАЦИИ РАЗЛИЧНЫХ СИСТЕМ.
3.1. Ячейки Бенара.
3.2. Лазер, как самоорганизованная система.
ЗАКЛЮЧЕНИЕ.
ЛИТЕРАТУРА.

Файлы: 1 файл

Иследовательская Термодинамика.docx

— 236.43 Кб (Скачать файл)

d P < 0             (условие эволюции)

P = min  ,  d P = 0          (условие текущего равновесия)

d P/ d t < 0                     (2.2)

2.1.1. ДИССИПАТИВНЫЕ  СТРУКТУРЫ.   

Каждая система состоит из элементов (подсистем) . Эти элементы находятся в определенном порядке и связаны определенными отношениями. Структуру системы можно назвать организацию элементов и характер связи между ними.   

В реальных физических системах имеются пространственные и временные структуры .   

Формирование структуры -  это возникновение новых свойств и отношений в множестве элементов системы . В процессах формирования структур играют важную роль понятия и принципы :

1. Постоянный отрицательный поток энтропии .

2. Состояние системы в дали от равновесия .

3. Нелинейность уравнений описывающих процессы .

4. Коллективное (кооперативное) поведение подсистем .

5. Универсальный критерий эволюции Пригожина - Гленсдорфа.   

Формирование структур при необратимых процессах должно сопровождаться качественным скачком (фазовым переходом) при достижении в системе критических значений параметров. В открытых системах внешний вклад в энтропию (2.1)  d S  в принципе можно выбрать произвольно , изменяя соответствующим образом параметры системы и свойства окружающей среды . В частности энтропия может уменьшаться за счет отдачи энтропии во внешнюю среду , т.е. когда  d S  < 0 . Это может происходить , если изъятие из системы в единицу времени превышает производство энтропии внутри системы , то есть 

 

 

                    d S                           dSe        dSi                     

¾    <   0 ,  если      ¾    >   ¾   >  0       (2.3)                     

d t                             dt          dt   

Чтобы начать формирование структуры , отдача энтропии должна превысить некоторое критическое значение . В сильно неравновесном расстоянии переменные системы удовлетворяют нелинейным уравнениям .   

Таким образом , можно выделить два основных класса необратимых процессов :

1. Уничтожение структуры вблизи положения равновесия . Это универсальное свойство систем при произвольных условиях .

2. Рождение структуры вдали от равновесия в открытой системе при особых критических внешних условиях и при нелинейной внутренней динамики . Это свойство не универсально .   

Пространственные , временные или пространственно-временные структуры , которые могут возникать вдали от равновесия в нелинейной области при критических значениях параметров системы называются  диссипативными структурами.    

В этих структурах взаимосвязаны три аспекта :

1. Функция состояния , выражаемая уравнениями .

2. Пространственно - временная структура , возникающая из-за неустойчивости .

3. Флуктуации , ответственные за неустойчивости .

Рис. 1.  Три аспекта диссипативных структур.   

Взаимодействия между этими аспектами приводит к неожиданным явлениям - к возникновению порядка через флуктуации , формированию высокоорганизованной структуры из хаоса.

 

2.2. САМООРГАНИЗАЦИЯ РАЗЛИЧНЫХ СТСТЕМ И

СЕНЕРГЕТИКА.   

 

Переход от хаоса к порядку , происходящий при изменении значений параметров от до критических к сверхкритическим , изменяет симметрию системы . По этому такой переход аналогичен термодинамическим фазовым переходам . Переходы в неравновесных процессах называются кинетическими фазовыми переходами . В близи неравновесных фазовых переходов не существует  непротиворечивого макроскопического описания . Флуктуации столь же важны , как и среднее значении . Например , макроскопические флуктуации могут приводить к новым типам не устойчивостей .   

Итак , в дали от равновесия между химической , кинетической и пространственно-временной структурой реагирующих систем существует неожиданная связь . Правда , взаимодействие , определяющие взаимодействие констант скоростей и коэффициентов переноса , обусловлены короткодействующими силами ( силами валентности , водородными связями и силами Ван-Дер-Вальса) . Однако решения соответствующих уравнений зависят , кроме того , от глобальных характеристик . Для возникновения диссипативных структур обычно требуется , чтобы размеры системы превышали некоторое критическое значение - сложную функцию параметров , описывающих реакционно-диффузионные процессы . Мы можем по этому утверждать , что химические неустойчивости задают дальнейший порядок , посредством которого система действует как целое .   

Если учесть диффузию , то математическая формулировка проблем , связанных с диссипативными структурами , потребует изучении дифференциальных уравнений в частных производных . Действительно , эволюция  концентрации компонент  Х  со временем определяется уравнением вида 

             (2.4)

где первый член дает вклад химических реакций в изменении концентрации  Хi  и обычно имеет простой полиноминальный вид , а второй член означает диффузию вдоль оси  r.   

По истине поразительно , как много разнообразных явлений описывает реакционно-диффузное уравнение (2.4 ) , по этому интересно рассмотреть  ²основное решение ² , которое бы соответствовала термодинамической ветви . Другие решения можно было бы получать при последовательных не устойчивостях , возникающих по мере удаления от состояния равновесия . Неустойчивости такого типа удобно изучать методами теории бифуркации [ Николис и Пригожин , 1977] . В принципе , бифуркация есть нечто иное , как возникновение при некотором критическом значении параметра нового решения уравнений . Предположим , что мы имеем химическую реакцию , соответствующую кинетическому уравнению  [Маклейн и Уолис , 1974] .                                 

d X                                  

¾   =  a X (X-R)              (2.5)                                  

d t   

Ясно что при  R < 0 существует только одно решение , независящее от времени ,X = 0 . В точке R = 0 происходит бифуркация , и появляется новое решение X = R.

   

Рис. 2.3.   Бифуркационная диограмма для уравнения ( 2.5.) .                     

Сплошная линия соответствует устойчивой ветви ,                     

точки - неустойчивой ветви .   

Анализ устойчивости в линейном приближении позволяет проверить , что решение  X = 0 при переходе через  R = 0 становится неустойчивым , а решение  X = R - устойчивым . В общем случаи при возрастании некоторого характеристического параметра  р  происходят последовательные бифуркации . На рисунке  2.4. показано единственное решение при  р = р1 , но при  

р = р2 единственность уступает место множественным решения .   

Интересно отметить , что бифуркация в некотором смысле вводит в физику  и в химию , историю - элемент , который прежде считался прерогативой наук занимающихся изучением биологическим , общественных и культурных явлений .

 

 

    Известно , что при изменении управляющих параметров в системе наблюдаются разнообразные переходные явления . Выделим теперь из этих наблюдений определенные общие черты , характерные для большого числа других переходов в физико химических системах .   

С этой целью представим графически (рис. 2.5) зависимость вертикальной компоненты скорости течения жидкости в некоторой определенной точке от внешнего ограничения , или , в более общем виде , зависимость переменной состояние системы  Х  (или  х = Х - Хs ) от управляющего параметра l . Таким образом мы получим график , известный под названием бифуркационной диаграммы .

   

Рис. 2.5. Бифуркационная диаграмма :             

а - устойчивая часть термодинамической ветви ,              

а1 - не устойчивая часть термодинамической ветви ,              

в1 ,в2 - диссипативные структуры , рожденные в                       

сверхкритической области .   

При малых значения l возможно лишь одно решение , соответствующее состоянию покоя в бенаровском эксперименте .Оно представляет собой непосредственную экстрополяцию термодинамического равновесия , и подобно равновесно , характеризующейся важным свойством - асимптотической устойчивостью , поскольку в этой области система способна гасить внутренние флуктуации или внешнее возмущения . По этой причине такую ветвь состояний мы будем называть термодинамической ветвью . При переходе критического значения параметра l , обозначенного lc на рисунке 2.5. , состоящие на этой ветви становится неустойчивыми , так как флуктуации или малые внешние возмущение уже не гасятся . Действуя подобно усилителю , система отклоняется от стационарного состояния и переходит к новому режиму , в случае бенаровского эксперимента соответствующему состоянию стационарной конвекции . Оба этих режима сливаются при l = lc и различаются при l > lc . Это явление называется бифуркацией . Легко понять причины , по которым это явление следует ассоциировать с катастрофическими изменениями и конфликтами. В самом деле , в решающий момент перехода система должна совершить критический выбор ( в окрестности l = lc ) , что в задаче Бенара связано с возникновением право- или левовращательных ячеек в определенной области пространства ( рис. 2.5. , ветви в1 или в2 ) .   

В близи равновесного состояния стационарное состояние асимптотических устойчивы (по теореме о минимальном производстве энтропии ) , по этому в силу непрерывности эта термодинамическая ветвь простирается во всей докритической области . При достижении критического значения термодинамическая ветвь может стать неустойчивой , так что любое , даже малое возмущение , переводит систему с термодинамической ветви в новое устойчивое состояние , которое может быть упорядоченным . Итак , при критическом значении параметром произошла бифуркация и возникла новая ветвь решений и , соответственно , новое состояние . В критической области , таким образом , событие развивается по такой схеме :   

Бифуркация в широком понимании - приобретении нового качества движениями динамической системы при малом изменении ее параметров ( возникновение при некотором критическом значении параметра нового решения уравнений ) . Отметим , что при бифуркации выбор следующего состояния носит сугубо случайный характер , так что переход от одного необходимого устойчивого состояния к другому необходимому устойчивому состоянию проходит через случайное (диалектика необходимого и случайного) . Любое описание системы , претерпевающей бифуркацию , включает как детерминистический , так и вероятностный элементы , от бифуркации до бифуркации поведении системы детерминировано , а в окрестности точек бифуркации выбор последующего пути случаен . Проводя аналогию с биологической эволюцией можно сказать , что мутации - это флуктуации , а поиск новой устойчивости играет роль естественного отбора . Бифуркация в некотором смысле вводит в физику и химию элемент историзма - анализ состояния  в1 , например , подразумевает знание истории системы , прошедшей бифуркацию .   

Общая теория процессов самоорганизации открытых сильно не равновесных системах развивается на основе универсального критерия эволюции Пригожина - Гленсдорфа . Этот критерий является обобщением теоремы Пригожина о минимальном производстве энтропии . Скорость производства энтропии , обусловленная изменением термодинамических сил  Х , согласно этому критерию подчиняется условию                                   

dx P / t  £  0              (2.6)   

Это неравенство не зависит не от каких предположений о характере связей между потоками и силами в условиях локального равновесия и носит по этому универсальный характер . В линейной области неравенство (2.6. ) переходит в теорему Пригожина о минимальном производстве энтропии . Итак , в неравновестной системе процессы идут так , т.е. система эволюционирует таким образом, что скорость производства энтропии при изменении термодинамических сил уменьшается ( или равна нулю в стационарном состоянии ).    

Упорядоченные структуры , которые рождаются вдали от равновесия , в соответствии с критерием  (2.6.) и есть диссипативные структуры .   

Эволюция бифуркации и последующей самоорганизации обусловлено , таким образом , соответствующими не равновесными ограничениями .   

Эволюция переменных  Х будет описываться системой уравнений                              

         (2.7)

где функции  F как угодно сложным образом могут зависить от самих переменных Х и их пространственных производных координат r и времени t . Кроме того , эти функции буду зависить от управляющих параметров , т.е. тех изменяющихся характеристик , которые могут сильно изменить систему . На первый взгляд кажется очевидным , что структура функции { F } будет сильно определятся типом соответствующей рассматриваемой системы . Однако , можно выделить некоторые основные универсальные черты , независящие от типа систем.   

Решение уравнения (2.7) , если нет внешних ограничений , должны соответствовать равновесию при любом виде функции F . Поскольку равновесное состояние стационарно , то

Fi ({Xрав},lрав  ) = 0               (2.8)   

В более общем случае для неравновесного состояния можно аналогично написать условие

Fi ({X},l) = 0                   (2.9)   

Эти условия налагают определенные ограничения универсального характера , например, законы эволюции системы должны быть такими , чтобы выполнялось требование положительности температуры или химической концентрации, получаемых как решения соответствующих уравнений.   

Другой универсальной чертой является нелинейным . Пусть , например некоторая единственная характеристика системы

удовлетворяет уравнению

                                            (2.10)

где  k - некоторый параметр , l - внешние управляющие ограничения . Тогда стационарное состояние определяется из следующего алгебраического уравнения                                    

l - kX = 0              (2.11)

откуда                                    

Xs = l / k                (2.12)   

В стационарном состоянии , таким образом , значении характеристики , например , концентрации , линейно изменяется в зависимости от значений управляющего ограничения l , и имеется для каждого l единственное состояние  Хs. Совершенно однозначно можно предсказать стационарное значение  Х при любомl ,если иметь хотя бы два экспериментальных значения  Х

(l ) .Управляющий параметр может , в частности , соответствовать степени удаленности системы от равновесия . Поведение в этом случае системы очень похожи на равновесии даже при наличии сильно неравновесных ограничений .

Информация о работе Термодинамика