Термодинамика

Автор работы: Пользователь скрыл имя, 19 Февраля 2015 в 18:33, контрольная работа

Описание работы

Противоречие между вторым началом термодинамики и примерами высокоорганизованного окружающего нас мира было разрешено с появлением более пятидесяти лет назад и последующим естественным развитием нелинейной неравновесной термодинамики. Ее еще называют термодинамикой открытых систем. Большой вклад в становление этой новой науки внесли И.Р.Пригожин, П.Гленсдорф, Г.Хакен. Бельгийский физик русского происхождения Илья Романович Пригожин за работы в этой области в 1977 году был удостоен Нобелевской премии.

Содержание работы

ВВЕДЕНИЕ
ГЛАВА 1
ОСНОВНЫЕ ПОНЯТИЯ И ИСХОДНЫЕ ПОЛОЖЕНИЯ ТЕРМОДИНАМИКИ
1.1. Закрытые и открытые термодинамические системы.
1.2. Нулевое начало термодинамики.
1.3. Первое начало термодинамики.
1.4. Второе начало термодинамики.
1.4.1. Обратимые и необратимые процессы.
1.4.2. Энтропия.
1.5. Третье начало термодинамики.
ГЛАВА 2
ОСНОВНЫЕ ПОНЯТИЯ И ПОЛОЖЕНИЯ СИНЕРГЕТИКИ.
САМООРГАНИЗАЦИЯ РАЗЛИЧНЫХ СИСТЕМ.
2.1. Общая характеристика открытых систем.
2.1.1. Диссипативные структуры.
2.2. Самоорганизация различных систем и синергетики.
2.3. Примеры самоорганизации различных систем.
2.3.1. Физические системы.
2.3.2. Химические системы.
2.3.3. Биологические системы.
2.3.4. Социальные системы.
Постановка задачи.
ГЛАВА 3
АНАЛИТИЧЕСКИЕ И ЧИСЛЕННЫЕ ИССЛЕДОВАНИЯ САМООРГАНИЗАЦИИ РАЗЛИЧНЫХ СИСТЕМ.
3.1. Ячейки Бенара.
3.2. Лазер, как самоорганизованная система.
ЗАКЛЮЧЕНИЕ.
ЛИТЕРАТУРА.

Файлы: 1 файл

Иследовательская Термодинамика.docx

— 236.43 Кб (Скачать файл)

Рис. 2.6. Иллюстрация универсальной черты нелинейности в самоорганизации структур .   

Если же стационарное значение характеристики  Х не линейно зависит от управляющего ограничения при некоторых значениях , то при одном и том же значении имеется несколько различных решений . Например , при ограничениях система имеет три стационарных решения , рисунок 2.6.в. Такое универсальное отличие от линейного поведения наступает при достижении управляющим параметром некоторого критического значения  l - проявляется бифуркация. При этом в нелинейной области небольшое увеличение может привести к неодекватно сильному эффекту - система может совершить скачок на устойчивую ветвь при небольшом изменении вблизи критического значения  l , рисунок 2.6.в. Кроме того из состояний на ветви  А1В могут происходить переходы  АВ1 ( или наоборот ) даже раньше , чем будут достигнуты состояния  В или А , если возмущения накладываемые на стационарное состояние , больше значение , соответствующего промежуточной ветви  А В . Возмущениями могут служить либо внешнее воздействие либо внутренние флуктуации в самой системе . Таким образом , системе с множественными стационарными состояниями присуще универсально свойствам внутренне возбудимость и изменчивости скачкам .   

Выполнение теоремы по минимально производстве энтропии в линейной области , а, как обобщение этой теоремы , выполнение универсального критерия (2.6.) и в линейной , и в нелинейной области гарантируют устойчивость стационарных неравновесных состояний. В области линейности необратимых процессов производство энтропии играет такую же роль , как термодинамические потенциалы в равновесной термодинамике . В нелинейной области величина  dP / dt  не имеет какого либо общего свойства , однако , величина  dx P/dt удовлетворяет неравенству общего характера (2.6. ) , которая является обобщением теоремы о минимальном производстве энтропии .

 

2.3 ПРИМЕРЫ САМООРГАНИЗАЦИИ РАЗЛИЧНЫХ

СИСТЕМ.

2.3.1. ФИЗИЧЕСКИЕ  СИСТЕМЫ.    

 

В принципе даже в термодинамическом равновесии можно указать примеры самоорганизации , как результаты коллективного поведения . Это , например , все фазовые переходы в физических системах , такие как переход жидкость - газ , ферромагнитный переход или возникновение сверхпроводимости . В неравновесном состоянии можно назвать примеры высокой организации в гидродинамике , в лазерах различных типов , в физике твердого тела - осциллятор Ганна , туннельные диоды , рост кристаллов .   

В открытых системах , меняя поток вещества и энергии из вне , можно контролировать процессы и направлять эволюцию систем к состояниям , все более далеким от равновесия . В ходе неравновесных процессов при некотором критическом значении внешнего потока из неупорядоченных и хаотических состояний за счет потери их устойчивости могут возникать упорядоченные состояния , создаваться диссипативные структуры .

   При достижении критического значения параметра Т , рождается , таким образом , пространственная диссипативная структура . При равновесии температуры равны   Т2 =Т1  ,  DТ = 0 . При кратковременном подогреве (подводе тепла) нижней плоскости , то есть при кратковременном внешнем возмущении температура быстро станет однородной и равной ее первоначальному значению . Возмущение затухает , а состояние - асимптотически устойчиво. При длительном , но до критическом подогреве ( DТ < DТkp ) в системе снова установится простое и единственное состояние , в котором происходит перенос к верхней поверхности и передачи его во внешнюю среду (теплопроводность) , рис. 2.8 , участок а . Отличие этого состояния от равновесного состояния состоит в том , что температура , плотность , давление станут неоднородными . Они будут приблизительно линейно изменяться от теплой области к холодной .

 

 

2.3.1в.  ЛАЗЕР , КАК САМООРГАНИЗУЮЩАЯСЯ

СИСТЕМА.   

 

Итак , в качестве примера физической системы , упорядоченность которой есть следствие внешнего воздействия , рассмотрим лазер.   

При самом грубом описании лазер - это некая стеклянная трубка , в которую поступает свет от некогерентного источника (обычной лампы) , а выходит из нее узконаправленный когерентный световой пучок , при этом выделяется некоторое количества тепла.

   

При малой мощности накачки эти электромагнитные волны , которые испускает лазер , некоррелированные , и излучение подобно излучению обычной лампы. Такое некогерентное излучение - это шум , хаос. При повышении внешнего воздействия в виде накачки до порогового критического значения некогерентный шум преобразуется в  ²чистый тон² , то есть испускает число синусоидальная волна - отдельные атомы ведут себя строго коррелированным образом , самоорганизуются.                        

 

2.3.2.  ХИМИЧЕСКИЕ  СИСТЕМЫ .  

 

 

 В этой области синергетика сосредотачивает свое внимание на тех явлениях , которые сопровождаются образованием макроскопических структур . Обычно если дать реагентам про взаимодействовать, интенсивно перемешивая реакционную смесь, то конечный продукт получается однородный . Но в некоторых реакциях могут возникать временные, пространственные или смешанные ( пространственные - временные) структуры . Наиболее известным примером может служить реакция Белоусова - Жаботинского .

 

2.3.2а.  РЕАКЦИЯ  БЕЛАУСОВА - ЖАБОТИНСКОГО.    

 

Рассмотрим реакцию Белоусова -Жаботинского . В колбу сливают в определенных пропорциях Ce2(SO4) , KBrO3 , CH2(COOH)2, H2SO4 , добавляют несколько капель индикатора окисления - восстановления - ферроина и перемешивают . Более конкретно - исследуются окислительно - восстановительные реакции                          

Ce 3+_ _ _ Ce 4+ ;  Ce 4+_ _ _ Ce 3+

в растворе сульфата церия , бромида калия , малоковой кислоты и серной кислоты . Добавление феррогена позволяет следить за ходом реакции по изменению цвета ( по спектральному поглащению ) . При высокой концентрации реагирующих веществ , превышающих критическое значение сродства , наблюдаются необычные явления .

При составе              

сульфат церия - 0,12 ммоль/л              

бромида калия - 0,60 ммоль/л              

малоковой кислоты - 48 ммоль/л              

3-нормальная серная кислота ,               

немного ферроина

При 60 С изменение концентрации ионов церия приобретает характер релаксационных колебании - цвет раствора со временем периодически изменяется от красного (при избытке Се3+ ) до синего ( при избытке Се 4+) , рисунок 2.10а .

              

Рис. 2.10.  Временные (а) и пространственные (б)                               

периодические структуры в реакции                                

Белоусова - Жаботинского.

...Такая система и эффект получили  название химические часы . Если  на реакцию Белоусова - Жаботинского  накладывать возмущение - концентрационный  или температурный импульс , то  есть вводя несколько миллимолей бромата калия или прикасаясь к колбе в течении нескольких секунд , то после некоторого переходного режима будут снова совершаться колебания с такой же амплитудой и периодом , что и до возмущения . Диссипативная

Белоусова - Жаботинского , таким образом , является ассимптотически устойчивой . Рождение и существование незатухающих колебаний в такой системе свидетельствует о том , что отдельные части системы действуют согласованно с поддержанием определенных соотношений между фазами

 

 

2.3.3. БИОЛОГИЧЕСКИЕ  СИСТЕМЫ .   

 

Животный мир демонстрирует множество высокоупорядоченных структур и великолепно функционирующих . Организм как целое непрерывно получает потоки энергии ( солнечная энергия , например , у растений ) и веществ ( питательных ) и выделяет в окружающую среду отходы жизнедеятельности . Живой организм - это система открытая . Живые системы при этом функционируют определенно в дали от равновесия . В биологических системах , процессы самоорганизации позволяют биологическим системам ²трансформировать² энергию с молекулярного уровня на макроскопический . Такие процессы , например , проявляются в мышечном сокращении , приводящим к всевозможным движениям , в образовании заряда у электрических рыб , в распознавании образов , речи и в других процессах в живых системах. Сложнейшие биологические системы являются одним из главных объектов исследования в синергетике . Возможность полного объяснения особенностей биологических систем , например , их эволюции с помощью понятий открытых термодинамических систем и синергетики в настоящее время окончательно неясна . Однако можно указать несколько примеров явной связи между понятийным и математическим аппаратом открытых систем и биологической упорядоченностью.    

Более конкретно биологические системы мы рассмотрим в 3 главе , посмотрим динамику популяций одного вида  и систему ²жертва - хищник² .

 

2.3.4.  СОЦИАЛЬНЫЕ  СИСТЕМЫ .   

 

Социальная система  представляет собой определенное целостное образование , где основными элементами являются люди , их нормы и связи . Как целое система образует новое качество , которое не сводится к сумме качеств ее элементов . В этом наблюдается некоторая аналогия с изменением свойств при переходе от малого к    очень большому числу частиц в статической физике - переход от динамических к статическим закономерностям . При этом весьма очевидно , что всякие аналогии с физико - химическими и биологическими системами весьма условны , поэтому проводить аналогию между человеком и молекулой или даже нечто подобное было бы не допустимым заблуждением . Однако , понятийный и математический аппарат нелинейной неравновесной термодинамики и синергетики оказываются полезными в описании и анализе элементов самоорганизации в человеческом обществе.   

Социальная самоорганизация - одно из проявлений спонтанных или вынужденных процессов в обществе , направленная на упорядочение жизни социальной системы , на большее саморегулирование. Социальная система является системой открытой способная , даже вынужденная обмениватся с внешним миром информацией , веществом , энергией. Социальная самоорганизация возникает как результат целеноправленных индивидуальных действий ее составляющих.   

Рассмотрим самоорганизацию в социальной системы напримере урбанизации зоны . Проводя анализ урбанизации географических зон можно предположить , что рост локальной заселенности данной территории будет обусловлен наличием в этой зоне рабочих мест . Однако , здесь существует некоторая зависимость :состояние рынка , определяющего потребность в товарах и услугах и занятости . Отсюда возникает механизм нелинейной обратной связи в процессе роста плотности населения. Такая задача решается на основе логистического уравнения , где зона характеризуется ростом ее производительности  N , новых экономических функций  S - функция в локальной области  i  города. Логистическое уравнение описывает эволюцию численности населения и может быть тогда представлена в виде                       

dni

¾    =   Кni(N + å Rk Sik - ni) - dni         ( 2.13 )

dt                         k

где  Rk   вес данной к - ой  функции , ее значимость . Экономическая функция изменяется с ростом численности : определяется спросом на к - й  продукт в  i - й области в зависимости от увеличения численности населения и конкуренции предприятий в других зонах города . Появление новой экономической функции играет роль социально экономической флуктуации и нарушает равномерное распределение плотности населения. Такие численные расчеты по логистическим уравнениям могут быть полезны прогнозировании многих проблем.

ПОСТАНОВКА  ЗАДАЧИ.   

В рассмотренных примерах в литературе имеются лишь общие выводы и заключения , не приведены конкретные аналитические расчеты или численные .   

Целью настоящей дипломной работы является аналитические и численные исследования самоорганизации различных систем .

 

ГЛАВА 3

АНАЛИТИЧЕСКИЕ  И ЧИСЛЕННЫЕ  ИССЛЕДОВАНИЯ

САМООРГАНИЗАЦИИ  РАЗЛИЧНЫХ  СИСТЕМ.

3.1.       ЯЧЕЙКИ  БЕНАРА .  

 

 

  Для того , чтобы экспериментально изучить структуры , достаточно иметь сковороду , немного масла и какой ни будь мелкий порошок , чтобы было заметно движение жидкости . Нальем в сковороду масло с размешанным в нем порошком и будем подогревать ее снизу (рис. 3.1)

Рис. 3.1. Конвективные ячейки Бенара.   

Если дно сковороды плоское и нагреваем мы ее равномерно , то можно считать , что у дна и на поверхности поддерживаются постоянные температуры , снизу -  Т1, сверху -  Т2 . Пока разность температуры  DТ = Т1 - Т2 невелика , частички порошка неподвижны , а следовательно , неподвижна и жидкость .   

Будем плавно увеличивать температуру Т1 . С ростом разности температур до значения  DТc  наблюдается все та же картина , но когда  DТ > DТc , вся среда разбивается на правильные шестигранные ячейки (см. Рис. 3.1) в центре каждой из которых жидкость движется вверх , по кроям вниз . Если взять другую сковороду , то можно убедиться , что величина возникающих ячеек практически не зависит от ее формы и размеров . Этот замечательный опыт впервые был проделан Бенаром в начале нашего века , а сами ячейки получили название ячеек Бенара .   

Элементарное качественное объяснения причины движения жидкости заключается в следующем . Из-за теплового расширения жидкость расслаивается , и в более нижнем слое плотность жидкости  r1  меньше , чем в верхнем  r2  . Возникает инверсный градиент плотности , направленный противоположно силе тяжести . Если выделить элементарный объем  V , который немного смещается вверх в следствии возмущения , то в соседнем слое архимедова сила станет больше силы тяжести , так как  r2  >  r1 . В верхней части малый объем , смещаясь вниз , поподает в облость пониженной плотности , и архимедова сила будет меньше силы тяжести  FA < FT  , возникает нисходящее движение жидкости . Направление движения нисходящего и восходящего потоков в данной ячейке случайно , движение же потоков в соседних ячейках , после выбора направлений в данной ячейке детерминировано . Полный поток энтропии через границы системы отрицателен , то есть система отдает энтропию , причем в стационарном состоянии отдает столько , сколько энтропии производится внутри системы (за счет потерь на трение).                     

Информация о работе Термодинамика