Автор работы: Пользователь скрыл имя, 19 Февраля 2015 в 18:33, контрольная работа
Противоречие между вторым началом термодинамики и примерами высокоорганизованного окружающего нас мира было разрешено с появлением более пятидесяти лет назад и последующим естественным развитием нелинейной неравновесной термодинамики. Ее еще называют термодинамикой открытых систем. Большой вклад в становление этой новой науки внесли И.Р.Пригожин, П.Гленсдорф, Г.Хакен. Бельгийский физик русского происхождения Илья Романович Пригожин за работы в этой области в 1977 году был удостоен Нобелевской премии.
ВВЕДЕНИЕ
ГЛАВА 1
ОСНОВНЫЕ ПОНЯТИЯ И ИСХОДНЫЕ ПОЛОЖЕНИЯ ТЕРМОДИНАМИКИ
1.1. Закрытые и открытые термодинамические системы.
1.2. Нулевое начало термодинамики.
1.3. Первое начало термодинамики.
1.4. Второе начало термодинамики.
1.4.1. Обратимые и необратимые процессы.
1.4.2. Энтропия.
1.5. Третье начало термодинамики.
ГЛАВА 2
ОСНОВНЫЕ ПОНЯТИЯ И ПОЛОЖЕНИЯ СИНЕРГЕТИКИ.
САМООРГАНИЗАЦИЯ РАЗЛИЧНЫХ СИСТЕМ.
2.1. Общая характеристика открытых систем.
2.1.1. Диссипативные структуры.
2.2. Самоорганизация различных систем и синергетики.
2.3. Примеры самоорганизации различных систем.
2.3.1. Физические системы.
2.3.2. Химические системы.
2.3.3. Биологические системы.
2.3.4. Социальные системы.
Постановка задачи.
ГЛАВА 3
АНАЛИТИЧЕСКИЕ И ЧИСЛЕННЫЕ ИССЛЕДОВАНИЯ САМООРГАНИЗАЦИИ РАЗЛИЧНЫХ СИСТЕМ.
3.1. Ячейки Бенара.
3.2. Лазер, как самоорганизованная система.
ЗАКЛЮЧЕНИЕ.
ЛИТЕРАТУРА.
Рис. 2.6. Иллюстрация универсальной черты нелинейности в самоорганизации структур .
Если же стационарное значение характеристики Х не линейно зависит от управляющего ограничения при некоторых значениях , то при одном и том же значении имеется несколько различных решений . Например , при ограничениях система имеет три стационарных решения , рисунок 2.6.в. Такое универсальное отличие от линейного поведения наступает при достижении управляющим параметром некоторого критического значения l - проявляется бифуркация. При этом в нелинейной области небольшое увеличение может привести к неодекватно сильному эффекту - система может совершить скачок на устойчивую ветвь при небольшом изменении вблизи критического значения l , рисунок 2.6.в. Кроме того из состояний на ветви А1В могут происходить переходы АВ1 ( или наоборот ) даже раньше , чем будут достигнуты состояния В или А , если возмущения накладываемые на стационарное состояние , больше значение , соответствующего промежуточной ветви А В . Возмущениями могут служить либо внешнее воздействие либо внутренние флуктуации в самой системе . Таким образом , системе с множественными стационарными состояниями присуще универсально свойствам внутренне возбудимость и изменчивости скачкам .
Выполнение теоремы по минимально производстве
энтропии в линейной области , а, как обобщение
этой теоремы , выполнение универсального
критерия (2.6.) и в линейной , и в нелинейной
области гарантируют устойчивость стационарных
неравновесных состояний. В области линейности
необратимых процессов производство энтропии
играет такую же роль , как термодинамические
потенциалы в равновесной термодинамике
. В нелинейной области величина dP / dt не
имеет какого либо общего свойства , однако
, величина dx P/dt
2.3 ПРИМЕРЫ САМООРГАНИЗАЦИИ РАЗЛИЧНЫХ
СИСТЕМ.
2.3.1. ФИЗИЧЕСКИЕ СИСТЕМЫ.
В принципе даже в термодинамическом равновесии можно указать примеры самоорганизации , как результаты коллективного поведения . Это , например , все фазовые переходы в физических системах , такие как переход жидкость - газ , ферромагнитный переход или возникновение сверхпроводимости . В неравновесном состоянии можно назвать примеры высокой организации в гидродинамике , в лазерах различных типов , в физике твердого тела - осциллятор Ганна , туннельные диоды , рост кристаллов .
В открытых системах , меняя поток вещества и энергии из вне , можно контролировать процессы и направлять эволюцию систем к состояниям , все более далеким от равновесия . В ходе неравновесных процессов при некотором критическом значении внешнего потока из неупорядоченных и хаотических состояний за счет потери их устойчивости могут возникать упорядоченные состояния , создаваться диссипативные структуры .
При достижении критического значения параметра Т , рождается , таким образом , пространственная диссипативная структура . При равновесии температуры равны Т2 =Т1 , DТ = 0 . При кратковременном подогреве (подводе тепла) нижней плоскости , то есть при кратковременном внешнем возмущении температура быстро станет однородной и равной ее первоначальному значению . Возмущение затухает , а состояние - асимптотически устойчиво. При длительном , но до критическом подогреве ( DТ < DТkp ) в системе снова установится простое и единственное состояние , в котором происходит перенос к верхней поверхности и передачи его во внешнюю среду (теплопроводность) , рис. 2.8 , участок а . Отличие этого состояния от равновесного состояния состоит в том , что температура , плотность , давление станут неоднородными . Они будут приблизительно линейно изменяться от теплой области к холодной .
2.3.1в. ЛАЗЕР , КАК САМООРГАНИЗУЮЩАЯСЯ
СИСТЕМА.
Итак , в качестве примера физической системы , упорядоченность которой есть следствие внешнего воздействия , рассмотрим лазер.
При самом грубом описании лазер - это некая стеклянная трубка , в которую поступает свет от некогерентного источника (обычной лампы) , а выходит из нее узконаправленный когерентный световой пучок , при этом выделяется некоторое количества тепла.
При малой мощности накачки эти электромагнитные
волны , которые испускает лазер , некоррелированные
, и излучение подобно излучению обычной
лампы. Такое некогерентное излучение
- это шум , хаос. При повышении внешнего
воздействия в виде накачки до порогового
критического значения некогерентный
шум преобразуется в ²чистый тон² , то есть
испускает число синусоидальная волна
- отдельные атомы ведут себя строго коррелированным
образом , самоорганизуются.
2.3.2. ХИМИЧЕСКИЕ СИСТЕМЫ .
В этой области синергетика сосредотачивает свое внимание на тех явлениях , которые сопровождаются образованием макроскопических структур . Обычно если дать реагентам про взаимодействовать, интенсивно перемешивая реакционную смесь, то конечный продукт получается однородный . Но в некоторых реакциях могут возникать временные, пространственные или смешанные ( пространственные - временные) структуры . Наиболее известным примером может служить реакция Белоусова - Жаботинского .
2.3.2а. РЕАКЦИЯ БЕЛАУСОВА - ЖАБОТИНСКОГО.
Рассмотрим реакцию Белоусова -Жаботинского
. В колбу сливают в определенных пропорциях Ce2(SO4) , KBrO3 ,
Ce 3+_ _ _ Ce 4+ ; Ce 4+_ _ _ Ce 3+
в растворе сульфата церия , бромида калия , малоковой кислоты и серной кислоты . Добавление феррогена позволяет следить за ходом реакции по изменению цвета ( по спектральному поглащению ) . При высокой концентрации реагирующих веществ , превышающих критическое значение сродства , наблюдаются необычные явления .
При составе
сульфат церия - 0,12 ммоль/л
бромида калия - 0,60 ммоль/л
малоковой кислоты - 48 ммоль/л
3-нормальная серная кислота ,
немного ферроина
При 60 С изменение концентрации ионов церия приобретает характер релаксационных колебании - цвет раствора со временем периодически изменяется от красного (при избытке Се3+ ) до синего ( при избытке Се 4+) , рисунок 2.10а .
Рис. 2.10. Временные (а) и пространственные
(б)
периодические структуры в реакции
Белоусова - Жаботинского.
...Такая система и эффект
Белоусова - Жаботинского , таким образом , является ассимптотически устойчивой . Рождение и существование незатухающих колебаний в такой системе свидетельствует о том , что отдельные части системы действуют согласованно с поддержанием определенных соотношений между фазами
2.3.3. БИОЛОГИЧЕСКИЕ СИСТЕМЫ .
Животный мир демонстрирует множество
высокоупорядоченных структур и великолепно
функционирующих . Организм как целое
непрерывно получает потоки энергии (
солнечная энергия , например , у растений
) и веществ ( питательных ) и выделяет в
окружающую среду отходы жизнедеятельности
. Живой организм - это система открытая
. Живые системы при этом функционируют
определенно в дали от равновесия . В биологических
системах , процессы самоорганизации позволяют
биологическим системам ²трансформировать²
Более конкретно биологические системы мы рассмотрим в 3 главе , посмотрим динамику популяций одного вида и систему ²жертва - хищник² .
2.3.4. СОЦИАЛЬНЫЕ СИСТЕМЫ .
Социальная система представляет собой определенное целостное образование , где основными элементами являются люди , их нормы и связи . Как целое система образует новое качество , которое не сводится к сумме качеств ее элементов . В этом наблюдается некоторая аналогия с изменением свойств при переходе от малого к очень большому числу частиц в статической физике - переход от динамических к статическим закономерностям . При этом весьма очевидно , что всякие аналогии с физико - химическими и биологическими системами весьма условны , поэтому проводить аналогию между человеком и молекулой или даже нечто подобное было бы не допустимым заблуждением . Однако , понятийный и математический аппарат нелинейной неравновесной термодинамики и синергетики оказываются полезными в описании и анализе элементов самоорганизации в человеческом обществе.
Социальная самоорганизация - одно из проявлений спонтанных или вынужденных процессов в обществе , направленная на упорядочение жизни социальной системы , на большее саморегулирование. Социальная система является системой открытой способная , даже вынужденная обмениватся с внешним миром информацией , веществом , энергией. Социальная самоорганизация возникает как результат целеноправленных индивидуальных действий ее составляющих.
Рассмотрим самоорганизацию в социальной системы напримере урбанизации зоны . Проводя анализ урбанизации географических зон можно предположить , что рост локальной заселенности данной территории будет обусловлен наличием в этой зоне рабочих мест . Однако , здесь существует некоторая зависимость :состояние рынка , определяющего потребность в товарах и услугах и занятости . Отсюда возникает механизм нелинейной обратной связи в процессе роста плотности населения. Такая задача решается на основе логистического уравнения , где зона характеризуется ростом ее производительности N , новых экономических функций S - функция в локальной области i города. Логистическое уравнение описывает эволюцию численности населения и может быть тогда представлена в виде
dni
¾ = Кni(N + å Rk Sik - ni) - dni ( 2.13 )
dt k
где Rk вес данной к - ой функции , ее значимость . Экономическая функция изменяется с ростом численности : определяется спросом на к - й продукт в i - й области в зависимости от увеличения численности населения и конкуренции предприятий в других зонах города . Появление новой экономической функции играет роль социально экономической флуктуации и нарушает равномерное распределение плотности населения. Такие численные расчеты по логистическим уравнениям могут быть полезны прогнозировании многих проблем.
ПОСТАНОВКА ЗАДАЧИ.
В рассмотренных примерах в литературе имеются лишь общие выводы и заключения , не приведены конкретные аналитические расчеты или численные .
Целью настоящей дипломной работы является аналитические и численные исследования самоорганизации различных систем .
ГЛАВА 3
АНАЛИТИЧЕСКИЕ И ЧИСЛЕННЫЕ ИССЛЕДОВАНИЯ
САМООРГАНИЗАЦИИ РАЗЛИЧНЫХ
3.1. ЯЧЕЙКИ БЕНАРА .
Для того , чтобы экспериментально изучить структуры , достаточно иметь сковороду , немного масла и какой ни будь мелкий порошок , чтобы было заметно движение жидкости . Нальем в сковороду масло с размешанным в нем порошком и будем подогревать ее снизу (рис. 3.1)
Рис. 3.1. Конвективные ячейки Бенара.
Если дно сковороды плоское и нагреваем мы ее равномерно , то можно считать , что у дна и на поверхности поддерживаются постоянные температуры , снизу - Т1, сверху - Т2 . Пока разность температуры DТ = Т1 - Т2 невелика , частички порошка неподвижны , а следовательно , неподвижна и жидкость .
Будем плавно увеличивать температуру Т1 . С ростом разности температур до значения DТc наблюдается все та же картина , но когда DТ > DТc , вся среда разбивается на правильные шестигранные ячейки (см. Рис. 3.1) в центре каждой из которых жидкость движется вверх , по кроям вниз . Если взять другую сковороду , то можно убедиться , что величина возникающих ячеек практически не зависит от ее формы и размеров . Этот замечательный опыт впервые был проделан Бенаром в начале нашего века , а сами ячейки получили название ячеек Бенара .
Элементарное качественное объяснения причины движения жидкости заключается в следующем . Из-за теплового расширения жидкость расслаивается , и в более нижнем слое плотность жидкости r1 меньше , чем в верхнем r2 . Возникает инверсный градиент плотности , направленный противоположно силе тяжести . Если выделить элементарный объем V , который немного смещается вверх в следствии возмущения , то в соседнем слое архимедова сила станет больше силы тяжести , так как r2 > r1 . В верхней части малый объем , смещаясь вниз , поподает в облость пониженной плотности , и архимедова сила будет меньше силы тяжести FA < FT , возникает нисходящее движение жидкости . Направление движения нисходящего и восходящего потоков в данной ячейке случайно , движение же потоков в соседних ячейках , после выбора направлений в данной ячейке детерминировано . Полный поток энтропии через границы системы отрицателен , то есть система отдает энтропию , причем в стационарном состоянии отдает столько , сколько энтропии производится внутри системы (за счет потерь на трение).